
Causes of Discordance between Allometries at and above

vol . 1 86 , no . 2 the amer ican natural i st august 20 1 5
Species Level: An Example with Aquatic Beetles

Dawn M. Higginson,1,2,* Alexander V. Badyaev,1 Kari A. Segraves,3 and Scott Pitnick3
1. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721; 2. Center for Insect Science,
University of Arizona, Tucson, Arizona 85721; 3. Department of Biology, Syracuse University, Syracuse, New York 13210

Submitted July 20, 2014; Accepted March 23, 2015; Electronically published June 25, 2015

Dryad data: http://dx.doi.org/10.5061/dryad.j13m3.

abstract: Covariation among organismal traits is nearly universal,
occurring bothwithin and among species (static and evolutionary allom-

vironmental variations and adaptive evolution of covari-
ance patterns among traits (Weber 1990; Wilkinson 1993;
etry, respectively). If conserved developmental processes produce simi-
larity in static and evolutionary allometry, then when species differ in
development, it should be expressed in discordance between allometries.
Here, we investigate whether rapidly evolving developmental processes
result in discordant static and evolutionary allometries attributable to
trade-offs in resource acquisition, allocation, or growth across 30 spe-
cies of aquatic beetles. The highly divergent sperm phenotypes of these
beetles might be an important contributor to allometric evolution of
testis and accessory gland mass through altered requirements for the
production of sperm and seminal fluids.We documented extensive dis-
cordance between static and evolutionary allometries, indicating that
allometric relationships are flexibly modified over short time periods
but subject to constraint over longer time spans. Among species, sperm
phenotype did not influence relative investment in accessory glands but
was weakly associated with investment in testes. Furthermore, except
when spermwere long and simple, sperm phenotype was not associated
with species-specific modification of the allometry of testis/accessory
glandmass and body size. Our results demonstrate the utility of allome-
tric discordance to infer species differences in the provisioning and
growth of concurrently developing traits.

Keywords: Dytiscidae, gonadosomatic index, Gyrinidae, paragonia,
sperm conjugation.

Introduction

Covariance among traits at a single life stage within spe-
cies (static allometry; Cock 1966) and covariance among
traits among species (evolutionary allometry; Gould 1966)
provide insight into developmental mechanisms, functional
interactions between traits, and patterns of correlated evo-
lution (Cheverud 1982). Conserved developmental path-
ways should produce similar static allometries among spe-
cies (Gould 1966; Cheverud 1982; Riska 1986; Atchley and
Hall 1991). However, sensitivity of these pathways to en-
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Emlen 1996; West-Eberhard 2003; Frankino et al. 2005;
Cayetano et al. 2011) often result in divergent static allom-
etries among closely related taxa (e.g., mammals [Cheverud
1982; Martin and Harvey 1985], birds [Badyaev and Hill
2000; Green et al. 2001], insects [Klingenberg and Zim-
mermann 1992; Simmons and Tomkins 1996; Hosken et al.
2005], and plants [Primack and Antonovics 1981; Mazer
and Wheelwright 1993]). Nonetheless, even when static
allometries are divergent, evolutionary allometry typically
persists due to covariances diversifying along an axis, pre-
sumably as a consequence of constraint or selection (Lande
1979, 1985; Zeng 1988). We propose that because trait re-
lationships evolve along this axis, evolutionary allometry
can be considered a generalized model of trait covariance
across species. Hence, when traits scale differently within
and among species, this discordance between static allom-
etry and evolutionary allometry can be used to infer the
types of developmental modifications producing species-
specific patterns of trait covariance.
Within species, scaling relationships often result from

the use of shared resources and common factors regulat-
ing the growth of concurrently developing traits (Stern and
Emlen 1999; Zera and Harshman 2001; Badyaev 2004,
2007). The characteristics of scaling relationships (e.g.,
slope, intercept, linearity) are determined by the relative
initial size of the traits (e.g., precursor tissues) and the rate
and duration of growth (Nijhout 2011). Due to common
descent, the null expectation for related species is similar
modes of trait production (i.e., similar patterns of resource
acquisition, resource allocation, and growth regulation) and
thus similar static allometries. In this scenario, evolutionary
allometry will have a scaling coefficient and factor (i.e.,
slope and intercept, respectively) analogous to the static al-
lometries, suggesting that a common mechanism (i.e., con-
served developmental processes) underlies both static and
evolutionary allometry (fig. 1A). In contrast, discordance be-
tween static and evolutionary allometry occurs when species-
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growth of traits results in dissimilar static and evolutionary test whether specific modifications of trait relationships are
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allometric scaling factors or coefficients. For example, discor-
dance occurs when species differences in the rate and dura-
tion of growth alter the scaling coefficient (i.e., slope) between
a trait and body size (fig. 1B), whereas changes in initial re-
source allocation to a trait relative to body size alter the scal-
ing factor (i.e., intercept) without a corresponding change in
the scaling coefficient (fig. 1C; Atchley andHall 1991; Nijhout
2011; but see Emlen andNijhout 2000). Discordance between
static and evolutionary allometry can also occurwhen a devel-
oping trait does not covary with body size within species (i.e.,
an absence of allometry) despite covariation between the trait
and the body size among species (fig. 1D). Within species,
static allometry will be absent if a trait is insensitive to signals
of body size or is provisioned after the determination of body
size (among species, evolutionary allometrymaypersist). Thus,
by using evolutionary allometry as a reference pattern of trait
This content downloaded from 23.235.32
All use subject to JSTOR
associated with ecological or selective contexts.
Because trait exaggeration associated with sexual selec-

tion is frequently achieved through growth-based trade-
offs (e.g., Eberhard 1985; Emlen and Nijhout 2000) and
results in diverse allometric relationships with body size
(Bonduriansky and Day 2003; Badyaev 2004; Bondurian-
sky 2007), discordance between static and evolutionary allom-
etry of reproductive traits and body size should be common.
Testes and seminal fluid–producing accessory glands (e.g.,
paragonia in insects) are subject to indirect selection for male
fertility and sperm competitiveness (e.g., Fairn et al. 2007;
Simmons and Fitzpatrick 2012; Perry et al. 2013) and are of
particular interest to the investigation of allometric evolu-
tion, because their ontogeny is often temporally separated
from other aspects of organismal growth and these traits can
vary widely in size relative to body mass without disrupting
specific modification of trade-offs between provisioning and covariance, discordance with static allometry can be used to
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Figure 1: Types of discordance between static and evolutionary allometry resulting from trade-offs between provisioning and growth of two
traits, using testis and body mass as an example. In the top panels, a shaded region represents static allometry, with individuals of a given
species shown as filled circles. Evolutionary allometry may assume a variety of shapes. Here we focus on linear relationships due to their
adequacy to describe trait relationships in many taxa (Gould 1966), including those in this study. A, When resource allocation and the timing
and duration of growth of two traits are similar to the among-species mean, static allometry is expected to be concordant with evolutionary
allometry. B, Species-specific change in the timing or duration of growth of the traits due to altered sensitivity to growth signals is predicted
to result in changes in the allometric coefficient. C, Change to the initial resource allocation to a trait relative to body size is predicted to alter
the scaling factor without corresponding changes in the allometric coefficient. D, Breakdown of an allometric relationship is predicted to
occur when a developing trait becomes insensitive to signals of body size or is provisioned after determination of body size. Scenarios B,
C, and D will result in discordance with evolutionary allometry.
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whole-organism function. Diversification of sperm mor-
phology in response to sexual selection (Snook 2005; Pitnick

organs may not reach their final size until months after adult
eclosion (Heming 2003, p. 22), we expected a lack of covaria-
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et al. 2009a; Pizzari and Parker 2009) might be an important
contributing factor to the shaping of evolutionary allometry
between testis/paragonial mass and body size. Larger or
more complex sperm might be associated with increased in-
vestment in sperm production (Ramm and Schärer 2014) or
reduced investment in nonsperm components of the ejacu-
late (i.e., seminal fluid); this hypothesis is supported by a sig-
nificant correlation between sperm phenotype and testis
mass in birds,mammals,fish, and insects (Gage 1994; Pitnick
1996; Stockley et al. 1997; Schulte-Hostedde and Millar
2004; Lüpold et al. 2009). However, elaboration of sperm
phenotypes might not impact allometric scaling if it is
achieved without substantial modification of individual
sperm morphology, as is the case with sperm conjugation,
where two or more spermatozoa join together for motility
or transport through the female reproductive tract (Hig-
ginson and Pitnick 2011).

Here, we test for the presence and type of developmen-
tal modifications that result in discordance between static
and evolutionary allometry using members of Hydradeph-
aga, a monophyletic clade of aquatic beetles (Shull et al.
2001; Ribera et al. 2002) that vary dramatically in body
size, sperm morphology, and sperm conjugation. We es-
tablish within- and among-species patterns of allometric
scaling between testis/paragonial mass and body size for
30 species from the four major lineages of Hydradephaga
(Dytiscidae,Gyrinidae,Haliplidae, andNoteridae) to (1) de-
termine the prevalence of trade-offs between resource ac-
quisition, allocation, and growth in species-specific modi-
fication of allometric relationships and (2) investigate the
extent to which sperm phenotype is associated with the cor-
related evolution of testis/paragonial mass and body size.
If developmental constraints on the production of testes or
paragonia are strong, static and evolutionary allometries will
show similar patterns of trait covariance, whereas changes
in developmental trade-offs between reproductive traits and
body size might produce discordance in one of three ways.
First, if fertilization success conferred by testis or paragonial
mass changes with body size or is dependent on sperm phe-
notype, then we would expect species-specific changes in the
allometric scaling coefficient of testis or paragonial mass,
achieved through modification of the timing or duration of
growth of the traits. Second, if conjugation requires changes
in testis structure or alters the need for accessory gland secre-
tions, then conjugation is expected to change initial allocation
to testes or paragonia, producing discordance in the scaling
factors between static and evolutionary allometry. Third, as
many species of aquatic beetles have extended adult life spans
associatedwith delayed investment in reproductive organs (e.g.,
overwintering as adults prior to breeding; Larson et al. 2000;
D. M. Higginson, personal observations), where reproductive
This content downloaded from 23.235.32
All use subject to JSTOR
tion between reproductive traits and bodymass to be themost
common source of discordance between static and evolution-
ary allometry. Additionally, we assessed the contribution of
evolutionary lability in body mass and testis/paragonial mass
in driving interspecific variation in allometric scaling.

Methods

Testis/Paragonial Mass and Sperm Phenotype

For each species, males (np 12) were euthanized and dis-
sected in distilled water. Testes, paragonia, and soma were
dried separately and weighed using an Orion Cahn C-35
ultra-microbalance. Mean testis, paragonia, and soma mass
were calculated for each species (tables S1, S2 in the Dryad
Digital Repository: http://dx.doi.org/10.5061/dryad.j13m3
[Higginson et al. 2015]). Additional males (np 5) were
used to determine the sperm traits for each species. Semi-
nal vesicles were ruptured to release mature sperm into
phosphate-buffered saline on glass slides. Slides were then
dried, fixed, and DNA-stained using Hoechst or 40,6-
diamidino-2-phenylindole (DAPI). Sperm length was mea-
sured from digitized images using dark field or epifluores-
cence microscopy and ImageJ (Rasband 2012). Presence and
type of conjugation were recorded for each species (Hig-
ginson et al. 2012a; table S2 in the Dryad Digital Reposi-
tory: http://dx.doi.org/10.5061/dryad.j13m3 [Higginson et al.
2015]).

Phylogenetic Trees

Evolutionary relationships among species were inferred
using 2,228 continuous or near-continuous base pairs of the
mitochondrial genes COI, tRNA-Leu, and COII. Sequences
were aligned by eye. The appropriate model of sequence evo-
lution was selected using DT-ModSel (Minin et al. 2003).
We usedMrBayes (Ronquist and Huelsenbeck 2003) to gen-
erate phylogenetic trees based on four independent runs,
with six Markov chain Monte Carlo (MCMC) chains each of
5#107 generations sampled every 4,000 generations, 0.1
heating, and uninformative priors (i.e., MrBayes defaults).
The program AWTY (Nylander et al. 2008) was used to
assess convergence, and the first 106 generations were dis-
carded as burn-in. After the MCMC chains converge, they
visit alternative phylogenetic trees in proportion to their
probability, given the data, model, and priors. A majority
consensus tree was constructed from the 40,000 post-burn-
in trees (Dryad Digital Repository: http://dx.doi.org/10.5061
/dryad.j13m3 [Higginson et al. 2015]).
We explored alternative fossil time calibration scenarios

using PATHd8 (Britton et al. 2007) before fixing the age of
Hydradephaga at 219.8 Ma (Hunt et al. 2007) in addition
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to eight other calibration points for generic and family di-
vergence times (Dytiscoidea [Ponomarenko 1993; Beutel

of the k model of evolution. Log testis and paragonial mass
evolution were well described by Brownian motion (DAICc
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et al. 2013], dytiscid genera [Nilsson 2001], haliplid genera
[Prokin and Ponomarenko 2013], Dytiscidae [Prokin and
Ren 2010], timescale [IUGS 2013]).

Statistical Analyses
All continuous variables were log10 transformed. Intraspe-

Across Hydradephaga, testes comprised a median of 3.34%

Across species, testis mass scaled to body mass with an allo-

To determine whether related species had similar static al-
cific analyses also used log10-transformed data (Huxley 1932;
Houle et al. 2011). We did not attempt to analyze the types
of conjugation (Higginson et al. 2012a) separately, instead
choosing to treat conjugation as a binary trait (present or ab-
sent) to maximize the degrees of freedom available for hy-
pothesis testing.

Static and evolutionary allometry. Estimation of static
allometric coefficients and related analyses were conducted
with JMP Pro 9.0.3 (SAS Institute, Cary, NC). Highly in-
fluential observations (Cook’s D > 1), suspected to result
from tissue-handling errors, were omitted from calculations
of static allometric relationships. To reduce bias resulting
from measurement error (Hansen and Bartoszek 2012),
we calculated the evolutionary allometric coefficients, in-
corporating species standard error of mean trait values us-
ing the varFixed function in the R package nlme (Pinheiro
et al. 2013) and the covariance structures resulting from al-
ternative models of trait evolution using our time-calibrated
phylogenetic tree with the package ape (Paradis et al. 2004).
Model fit was evaluated using Akaike information criterion
(AIC) and Bayesian information criterion (BIC) values.

Tests of discordance. T ratios were used to test for dif-
ferences between static and evolutionary allometric coeffi-
cients. When evolutionary and static allometric coefficients
were equivalent, we tested for differences between the scal-
ing factors using the s ratio method described by White and
Gould (1965). Static allometry for a given species was con-
sidered equivalent to evolutionary allometry if there was no
significant difference in coefficient relative to evolutionary
allometry and if the difference in scaling factors was less
than 0.1 (i.e., the s ratio).

Evolutionary rates. We estimated relative rates of trait
evolution, incorporating within-species trait covariance
and measurement error (Adams 2013). This method al-
lows direct comparison of the evolutionary rates of multi-
ple traits, following a Brownian motion model. The mea-
surement error of sperm length was unavailable for three
species, Celina hubbelli, Hydrovatus pustulatus, and Ilybius
oblitus, which were thus excluded from the analysis. To as-
sess the appropriateness of this model for each of our traits,
we first examined alternative models of trait evolution using
the function fitContinuous in the R package geiger (Harmon
et al. 2008). Due to the broad taxonomic sampling present
in this study, we did not attempt to evaluate the suitability
This content downloaded from 23.235.32
All use subject to JSTOR
of Brownian motion vs. next-best-fit modelp 1.32 and 1.88,
respectively). However, log body mass was better described
by a model with a linear trend in evolutionary rates over
time (DAICcp 4.07). Nonetheless, the approach of Adams
(2013) remains the best available method to compare rela-
tive rates of trait evolution while accounting for sources of
error, but due caution should be exercised in the interpreta-
tion of the results.

Results
of total body mass (range: 0.85%–8.06%), and 23 of 30
species had conjugated sperm. Sperm length (medianp
0.60 mm, range: 0.10–6.84 mm) and body mass (medianp
3.85; range: 0.26–65.02 mg) varied widely.

Evolutionary Allometry
metric coefficient greater than 1 (bp 1.32, P< .0001; test for
difference from isometry: t28 p 4.62, Pp .0001; fig. 2A). In
no case did inclusion of a covariance structure based on phy-
logenetic relationships improve the fit of allometric models
(DBICp 3.33–4.37). The best-fit model of testis mass ver-
sus total body mass had a covariance structure that simu-
lated a star phylogeny (Pagel’s lp 0; Pagel 1999) and was
equivalent to generalized least squares regression. In con-
trast, paragonia mass scaled isometrically with body mass
(bp 1.13, P< .0001; test for difference from isometry: t28 ¼
1.09, Pp .28; fig. 2B), and the best-fit model included a co-
variance structure simulating Brownian evolution along the
phylogenetic tree (Pagel’s lp 1 vs. 0 DBICp 5.75; Pagel
1999; Freckleton et al. 2002). We additionally examined
how combined testis/paragonial mass scaled with total body
mass and found that it had an allometric coefficient greater
than 1 (bp 1.15, P< .0001; test for difference from isome-
try: t28 ¼ 2.11, Pp .04; fig. 2C) and followed a Brownian
motion model of evolution. To investigate whether alloca-
tion to one reproductive trait trades off with allocation to an-
other concurrently developing trait, we regressed testis mass
on paragonial mass and found that the traits scaled isometri-
cally (bp 0.91, P< .0001; test for difference from isometry:
t28 ¼ 0.81, Pp .42; fig. 2D), indicating no evidence of a
trade-off.Models with orwithout a trait covariance structure
based on species relatedness did not differ (DAIC< 0.51).

Static Allometry
lometry, we tested alternative models of evolution of the
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for the evolution of the standardized slope of testis or para-

Similarly, a nonphylogenetic model fit as well or better than
various evolutionary models of the standardized slope of com-
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gonial mass versus total body mass assumed the data were
drawn from a single normal distribution with no covariance
among species, although the strength of support for this
model was stronger for testes than for paragonia (e.g., Brownian
motion vs. white noiseDAICp 13.81 and 3.05, respectively).
This content downloaded from 23.235.32
All use subject to JSTOR
bined testis/paragonial mass versus total body mass (DAICp
0.47) or testes versus paragonia (DAIC ¼ 3.38). Collectively,
these results indicate that intraspecific allometries of the
taxa included in this study are independent of phylogenetic
relationships among species.
For the majority of species, the growth of reproductive

traits and body size were decoupled, with no association
between the two traits (P > .05; fig. 3; table 1). When allo-
metric relationships did remain, they frequently deviated
from evolutionary allometry through either altered allome-
tric coefficients or scaling factors (table 1). The species-
specific modification described above could have arisen
through either changes in growth and provisioning of re-
productive traits or body size. To investigate the underly-
ing mechanisms driving changes in scaling, we estimated
the rates of trait evolution and found that testis and par-
agonia mass evolved twice as fast as body mass (0.0030,
0.0029, and 0.0015, respectively; multiple evolutionary
rate likelihood ratiop 8.27, Pp .016). This suggests that
changes in allometric scaling were primarily the result of
changes in reproductive traits.

Sperm Phenotype and Allometry
of Testis/Paragonial Mass
We examined the association between sperm length, the
relative investment in testes or paragonia (e.g., testis mass/
total body mass), and the presence of conjugation, incor-
porating measurement error and phylogenetic relation-
ships. Phylogenetic generalized least squares regression us-
ing a Brownian motion model of evolution indicated that
increased sperm length was marginally associated with in-
creased relative investment in testes (main effect: t23 p 2.00,
Pp .06) and that single sperm were longer, with greater
relative investment in testes than conjugated sperm (t23 p
3.24, Pp .004; main effect of conjugation: t23 p 0.29, Pp
.77). There was no association between sperm length and
relative investment in paragonia (t25 p 20.56, Pp .58).
Discordance between static and evolutionary allome-

try was common (table 1), but in most cases, it was not as-
sociated with elaboration of the sperm phenotype. The
presence of conjugation was independent of discordance
between the scaling of testis mass, paragonial mass, and com-
bined testis/paragonial mass to total body mass (Fisher’s
exact test, Pp 1.00). Furthermore, conjugation did not af-
fect the type of discordance (i.e., change in scaling coeffi-
cient or factor) between static and evolutionary allome-
try (Fisher’s exact test, P > .15). Species with long, single
sperm, however, were more likely to have discordance re-
sulting from changes in the allometric coefficient of par-
agonial mass to total body mass relative to evolutionary
standardized slopes of these relationships. The best-fit model
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Figure 2: Evolutionary allometry of reproductive traits in Hydra-
dephagan beetles. Each species is represented by a filled circle. A,
Larger species have disproportionately larger testes than smaller spe-
cies (i.e., positive allometry). B, Paragonial mass increases isometri-
cally with body mass. C, Combined testis/paragonial mass scales to
bodymass with a coefficient slightly greater than 1, likely due to the con-
tribution of testis mass.D, Species with large testes tend to have dispro-
portionately small paragonia (i.e., negative allometry), but this trend
is not statistically significant. An asterisk denotes a scaling coefficient
significantly different from 1; P< .05.
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allometry, associated with the timing and duration of
growth of the two traits (multinomial logistic regression,

2

ing relationships due to strong stabilizing selection or
functional constraints. Conversely, we observed high evo-

Table 1: Summary of processes producing discordance between static and evolutionary allometry

Discordant

182 The American Naturalist
whole model: X p 23.03, df p 9, Pp .006; sperm length:
X2 p 10.71, df p 3, Pp .01; conjugation: X2 p 5.89, df p
3, Pp .12; sperm length#conjugation: X2 p 14.33, df p
3, Pp .003). In all other scenarios, there was no associa-
tion between sperm phenotype and allometric discordance
(P > .11).

Discussion

Our study revealed strong evolutionary allometry between
reproductive traits and body mass and extensive discor-
dance between static and evolutionary allometries, indicat-
ing that different mechanisms determine patterns of trait
covariation within and among species. Species-specific mod-
ification of static allometry was achieved through shifting
the timing of trade-offs in resource acquisition, allocation,
and growth between developing traits (Badyaev 2007), re-
sulting, respectively, in a loss of covariance between repro-
ductive traits and body mass (fig. 1D) or static allometries
that differ in their scaling factors (fig. 1C) or coefficients
(fig. 1B). The presence or type of discordance between static
and evolutionary allometry was not associated with sperm
phenotype, suggesting that there are multiple developmental
modifications that can accommodate elaboration of sperm
morphology.

Whereas among species, the ratio of paragonial mass and
combined testis/paragonial mass to body mass conformed
to expectations of traits evolving in a Brownian manner
along the branches of a phylogeny, the ratio of testis mass
to body mass and the static allometric coefficients of all
traits contained no phylogenetic signal, indicating that
clade-specific modification of scaling relationships is un-
common. A lack of phylogenetic signal can result from a
number of evolutionary scenarios, including similar selec-
tion across species, strong constraint in the production of
the traits, and divergent selection among species (Gittleman
et al. 1996; Blomberg et al. 2003; Revell et al. 2008). As evo-
lutionary allometry would be absent without a consistent
relationship between testis and body mass, a lack of phylo-
genetic signal is likely to result from conservatism of scal-
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lutionary lability, resulting in an absence of phylogenetic
signal among static allometries.
The contrasting patterns of diversification and constraint

of static and evolutionary allometries in Hydradephaga sug-
gest that species respond differently to contemporary and
long-term selection. Both body size and testis/paragonialmass
are important contributors to organismal fitness. When there
are trade-offs in production of these traits, investment in re-
productive traits relative to body size should maximize fitness
and limit the observed trait covariances (Shoval et al. 2012;
Sheftel et al. 2013). Contemporary trade-offs between testis/
paragonial mass and body size might be limited due to the
restricted range of trait covariances that can be produced
with a given developmental pathway. Alternatively, trade-
offs may be obscured by environmental contribution to phe-
notypes (e.g., resources might be abundant during the pri-
mary period determining body size but limited during testis
maturation).
Physiological differences among taxa can strongly in-

fluence patterns of trait covariance. Whereas relative para-
gonial mass does not vary systematically with mating fre-
quency (for opposing patterns, see, e.g., Baer and Boomsma
2004; Demary and Lewis 2007), among-species relative tes-
tis mass is a robust indicator of the intensity of postcopu-
latory sexual selection in a wide array of taxa (recently re-
viewed in Pizzari and Birkhead 2002; Calhim and Birkhead
2007; Vahed and Parker 2012). However, differences in the
importance of gonadal contribution to circulating hormone
titers may contribute to dissimilar allometric patterns of tes-
tis mass to body size among insects and vertebrates (i.e., scal-
ing coefficients of 11 and !1, respectively; Harcourt et al.
1981; Short 1981; Gage 1994; Nijhout 1994; Pitnick 1996;
Heming 2003, pp. 323–328; MacLeod and MacLeod 2009;
Vahed et al. 2011; this study). In contrast to that of verte-
brates, testis mass of insects does not relate to circulating
hormone titers (Nijhout 1994; Heming 2003, pp. 323–328)
and is thus expected to evolve freely in response to selec-
tion. In this study, the majority of species displayed no rela-
tionship between testis/paragonial mass and total body mass
Scaling relationship Concordant Change in coefficient Change in scaling No relationship
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(table 1), likely as a result of continued provisioning and
growth of testes and paragonia after the cessation of larval

showed that discordance between static and evolutionary
allometry can be used to infer species-specific modifica-
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growth, the primary determinant of total body mass. Here,
reduction of within-species trade-offs between reproduc-
tive traits and body mass, enabled by conserved life-history
traits, resulted in extensive discordance between within-
species and among-species trait covariance.

Our analyses suggest that the evolution of static allom-
etries, and thus discordance with evolutionary allometry,
was driven by changes in reproductive traits. Specifically,
we found that in Hydradephaga, testis and paragonial
mass evolved two times faster than total body mass. While,
to our knowledge, the relationship between sperm pheno-
type and paragonial mass is unknown for other taxa, in-
creased investment in testes is associated with the evolution
of longer sperm in butterflies (Gage 1994) and fruit flies
(Pitnick 1996). In fruit flies, long sperm more effectively
maintained preferred positions for fertilization by displac-
ing rival sperm (Miller and Pitnick 2002; Pattarini et al.
2006; Lüpold et al. 2012). The selective advantage of long
sperm, however, might be reduced by anchoring sperm
conjugates at preferred positions within the female repro-
ductive tract (Higginson et al. 2012b). In Hydradephaga,
sperm length is not associated with paragonial mass and
has only a marginal positive association with testis mass.
Interestingly, there was an interaction between sperm length
and conjugation; species with conjugation have typically
shorter sperm and smaller testes than those without conju-
gation. Thus, because of a possible mitigating effect of conju-
gation, selection for increased sperm length is unlikely to
explain the rapid evolution of testis and paragonial mass in
Hydradephaga.

With the exception of changes in allometric coefficients
being more common when sperm are long and single, elab-
oration of the sperm phenotype was not associated with
the presence or type of discordance between static and evo-
lutionary allometries of testis/paragonial mass and body
mass. Taken together, these results show that, across Hy-
dradephaga, evolution of sperm form requires minimal, if
any, changes in reproductive investment in testes or para-
gonia. This might be the result of the complex nature of
the trait subject to direct selection, ejaculate competitive-
ness, which provides multiple avenues of adaptation (Bjork
et al. 2007). For example, evolution of sperm morphology
may be accompanied by changes in sperm numbers (Parker
et al. 2010; Immler et al. 2011) or accessory gland contributions
to ejaculate composition (Wolfner 2002; Pitnick et al. 2009b),
not altering investment in testis/paragonial mass.

As evolutionary allometry does not necessarily reflect
functional relationships between traits, it has been sug-
gested to lack biological information about its component
species (e.g., Kozlowski and Weiner 1997; Schlichting and
Pigliucci 1998; Voje and Hansen 2013). However, here we
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tion of trade-offs in resource acquisition, allocation, and
growth of concurrently developing traits. When applied
to the evolution of allometric relationships between testis/
paragonial mass and body size in Hydradephagan beetles,
we found that the pattern and type of developmental modi-
fications were not readily predicted by elaboration of sperm
phenotype. Furthermore, the presence and type of develop-
mental trade-offs are not necessarily associated with specific
clades, indicating a high degree of lability of within-species
mechanisms of trait production. Persistence of evolutionary
allometry in this scenario could indicate strong selective or
functional constraints on the ratio of testis/paragonial mass
to body size among species.
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