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The evolutionarily persistent and widespread use of carotenoid pigments in

animal coloration contrasts with their biochemical instability. Consequently,

evolution of carotenoid-based displays should include mechanisms to

accommodate or limit pigment degradation. In birds, this could involve

two strategies: (i) evolution of a moult immediately prior to the mating

season, enabling the use of particularly fast-degrading carotenoids and

(ii) evolution of the ability to stabilize dietary carotenoids through metabolic

modification or association with feather keratins. Here, we examine evol-

utionary lability and transitions between the two strategies across 126

species of birds. We report that species that express mostly unmodified,

fast-degrading, carotenoids have pre-breeding moults, and a particularly

short time between carotenoid deposition and the subsequent breeding

season. Species that expressed mostly slow-degrading carotenoids in their

plumage accomplished this through increased metabolic modification of

dietary carotenoids, and the selective expression of these slow-degrading

compounds. In these species, the timing of moult was not associated with

carotenoid composition of plumage displays. Using repeated samples from

individuals of one species, we found that metabolic modification of dietary

carotenoids significantly slowed their degradation between moult and

breeding season. Thus, the most complex and colourful ornamentation is

likely the most biochemically stable in birds, and depends less on ecological

factors, such as moult timing and migration tendency. We suggest that

coevolution of metabolic modification, selective expression and biochemical

stability of plumage carotenoids enables the use of unstable pigments in

long-term evolutionary trends in plumage coloration.
1. Introduction
How do the contingent processes of development and function produce long-

term evolutionary trends? Darwin considered this question to be central to

his theory of evolution, because it would provide a crucial insight into the

relationship between inheritance and natural selection [1], and between the

developmental stability of complex phenotypes and their ability to accommo-

date and integrate novel inputs [2–4]. There are several insightful conceptual

resolutions of this question [5–10], but empirical tests are rare because they

require investigation of evolutionary trajectories where an environmentally con-

tingent trait gets reliably incorporated into the phenotype and stabilized over

evolutionary timescales.

One of the most striking examples of the recurrent incorporation and

accommodation of environmentally contingent elements is the evolution

of diet-dependent coloration in animals. For example in birds, complex and

lineage-specific carotenoid-based ornamentation requires carotenoids obtained

through the diet that are subsequently incorporated into the organismal pheno-

type [11]. Unbound carotenoids (and, in particular, dietary carotenoids)

degrade rapidly with UV and oxygen exposure [12–14]. Thus, differences

among carotenoids in biochemical stability, together with the empirical investi-

gation of mechanisms by which birds stabilize and integrate these compounds

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2016.0403&domain=pdf&date_stamp=2016-05-18
mailto:dmhigginson@email.arizona.edu
http://dx.doi.org/10.1098/rspb.2016.0403
http://dx.doi.org/10.1098/rspb.2016.0403
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org
http://orcid.org/
http://orcid.org/0000-0003-4665-5902
http://orcid.org/0000-0001-9807-1912
http://orcid.org/0000-0002-4487-6915
http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160403

2

 on May 18, 2016http://rspb.royalsocietypublishing.org/Downloaded from 
into their feathers, can provide important insight into the

evolutionary integration of externally obtained elements

into phenotypes.

Plumage-bound carotenoids are acquired through the diet

during the short period of feather growth (moult), and can be

either deposited directly or biochemically modified prior to

deposition in the feather [15,16]. Once carotenoids become

incorporated into the keratin matrix of a growing feather, no

further addition of pigment is possible. Numerous observations

of change in feather colour between subsequent moults showed

that abrasion or other alterations of feather structure (e.g. by

microbial activity, physical damage, UV exposure) progress-

ively exposes embedded carotenoids to additional oxidization,

and thus produces colour change despite the lack of additional

pigment input [17–21]. An important discovery is that different

carotenoid types within a feather have different potential for UV

and oxygen modification, with some carotenoids remaining

remarkably stable once deposited in feathers whereas others

change readily, considerably modifying the appearance of the

plumage [20–22]. The biochemical stability of carotenoids typi-

cally increases with metabolic modification [23,24], including

those commonly accomplished by birds [25]. Thus, metabolic

modification of carotenoids prior to deposition, the selective

deposition of biochemically stable carotenoids, and the duration

of post-deposition exposure prior to the breeding season

(i.e. timing of moult) should coevolve.

Carotenoids can be a priori classified into degradation

propensity groups based on their structural features (elec-

tronic supplementary material, appendix 1; [13,26]). For

example, carotenoids with different structures vary in their

potential for photo-oxidation, reactivity with free radicals,

and in their associated tendency to produce carbonyl com-

pounds and highly reactive epoxides [12,27–29]. Reduction

in the number of conjugated double bonds in a carotenoid

produces a shift towards lower wavelength absorbance, and

corresponding changes in hue and intensity of the associated

colour [14,30]. Differences between yellow and red caroten-

oids in their degradation propensity and photo-bleaching

are consistent with the observed relative biochemical instabil-

ity of yellow feather pigments compared to red and purple

pigments (e.g. [31,32]).

To accommodate the biochemical instability of dietary

carotenoids, birds could employ several strategies. Species

could (i) evolve enzymatic pathways to convert these

compounds to slower degrading forms prior to deposition

in feathers, (ii) evolve compound-specific integration with

feather proteins that minimizes carotenoid instability,

(iii) selectively consume more slow-degrading dietary caro-

tenoids or selectively express slow-degrading carotenoids or

(iv) optimize the time between carotenoid acquisition (i.e.

moult) and plumage display (i.e. breeding season). These

strategies may be sequential evolutionary stages or alterna-

tive tactics pursued by different avian lineages. Optimizing

the timing of carotenoid acquisition and display might

involve the evolution of a pre-breeding moult for species

that deposit mostly fast-degrading carotenoids. Alternatively,

species might capitalize on the effects of feather abrasion,

subsequent photo-oxidation and associated colour change

to arrive at the most advantageous colour at the time of

mating [17,19,33]. Species with only a post-breeding moult

might have a greater prevalence of feather protective struc-

tures and modifications (e.g. unpigmented feather tips and

barbules, denser keratin matrix) that enable pigment
preservation and optimal expression during the subsequent

mating season.

Here, we examine coevolution and evolutionary lability

of metabolic modification of consumed carotenoids, their

expression in the plumage and timing of moult in 126 bird

species. The timing of moult, its duration and intensity

coevolves with migratory tendency in birds [33–36], which

imposes an additional constraint on the acquisition, metab-

olism and subsequent duration of environmental exposure

of the plumage carotenoids [37–40]. In turn, the juxtaposition

of moult, breeding season and migration varies with geo-

graphical distribution and local seasonality. We statistically

controlled for the effects of migration tendencies and geo-

graphical distribution on moult strategies and biochemical

stability of plumage carotenoids. We also examine the mech-

anisms associated with evolutionary transitions from the

expression of fast- to slow-degrading carotenoids in plumage

and use repeated sampling of individuals of one species to

directly examine the degradation propensities of feather

carotenoids in relation to their metabolic modification.
2. Material and methods
(a) Data collection
Data on the timing of the nuptial moult in relation to the breeding

season (here pre-breeding moult, post-breeding moult or both),

migration tendency (migratory or resident—which includes altitu-

dinal and short-range migrants), geographical distribution (North

and Central America, South America, Eurasia, Africa and Oceania)

and carotenoids present in the plumage for 126 bird species were

collected from the literature (figure 1; electronic supplementary

material, appendix 2). We also calculated the time (Dt, in days)

from the midpoint of the breeding season to the midpoint of the

closest moult period (figure 1). For species with both a pre- and

post-breeding moult, Dt was calculated from the pre-breeding

moult period. Data on metabolic pathway elongation (maximum

number of enzymatic reactions from dietary to expressed caroten-

oids) and the selective expression of plumage carotenoids

(proportion of carotenoid compounds expressed in the plumage

relative to the total number of carotenoids in a species’ metabolic

network) are taken from appendices in [25,41] and are presented

in figure 1.

(b) Categorization of carotenoid degradation propensity
Carotenoids were categorized as fast- or slow-degrading based

on their chemical structure and the reactivity of their functional

groups (electronic supplementary material, appendix 1). Caro-

tenoids are characterized by a backbone of alternating double

and single carbon–carbon bonds [42], which is subject to degra-

dation by cleavage of the double bonds in the presence of

oxygen, heat or light [29,43–45]. While carotenoids likely display

a continuum of biochemical stability, discrete categories were

required for our comparative analyses. Stability of the plumage

carotenoids was calculated as the ratio of slow-degrading

carotenoids to the total carotenoids present. For the subset of

analyses using discrete traits (see below), plumage carotenoids

were considered ‘stable’ if at least half of the expressed caro-

tenoids were slow-degrading and ‘unstable’ if more than half

of the expressed carotenoids were fast-degrading (electronic

supplementary material, appendix 1).

(c) Empirical validation of degradation categories
To examine whether carotenoids that we classified as fast- and slow-

degrading based on their structure (electronic supplementary
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Figure 1. (Overleaf.) Phylogenetic distribution of plumage carotenoid composition, moult type and migratory tendency shown on a strict consensus tree produced
from a 1000 tree pseudo-posterior distribution. Stability. The percentage of fast- and slow-degrading carotenoids in the plumage. Stability can be achieved through
biochemical modification of dietary carotenoids, consumption of slow-degrading carotenoids, or by the selective expression of slow-degrading carotenoids in the
plumage. Elongation. The maximum number of enzymatic reactions between dietary and expressed carotenoids observed in a species (dark blue) relative to the
maximum observed among the 126 species (length of the bar). Carotenoids. The total number of carotenoids expressed in the plumage. Expression. The percentage
of non-expressed carotenoids (dietary compounds or metabolic intermediates, dark yellow) and those expressed in the plumage (light yellow). Migration. Species
categorized as migratory (filled squares) include both long distance and partial migrants. Altitudinal and local migrants were classified as non-migratory (open
squares). Moult. The timing of moult relative to breeding (dark orange denotes pre-breeding only; light orange, both pre- and post-breeding moults; white,
post-breeding only). Dt: The mean time between moult and mating (no data were available for species without bars).
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material, appendix 1) degrade at different rates under natural con-

ditions, we repeatedly collected ornamental feathers from 54 adult

male house finches (Haemorhous mexicanus) in an individually

colour-marked study population in southeastern Arizona (details

in [38]). House finches are a particularly useful species to examine

the validity of the degradation categories, because they express a

similar number of slow- and fast-degrading carotenoids in their plu-

mage [25,41]. For each male, we sampled three to five feathers from

each ornamental area (breast, crown and rump) within 30 days of

moult completion, and then again three to six months after the

moult. The mean time between feather samples (mean+ s.e.:

154+6 days) approximately corresponds to the time between the

species’ single post-breeding moult (August–September) and

breeding season (January–February) for this population [46]. See

the electronic supplementary material, Methods for details of

carotenoid extraction and identification.

(d) Bayesian analyses
To test for correlated evolution and to estimate evolutionary tran-

sition rates between moult timing, migration tendency, the

stability of plumage carotenoids, elongation of metabolic path-

ways and selective expression of carotenoids in the plumage,

we used reversible-jump Markov chain Monte Carlo (rj-MCMC

[47–50]) and a 1000-tree sample from birdtree.org [51]. This

method simultaneously accounts for phylogenetic uncertainty

and visits evolutionary model and parameter combinations in

proportion to their posterior probabilities given the trees, data

and priors. See the electronic supplementary material Methods

for details of the analyses.

(e) Multivariate linear models
We calculated independent linear contrasts on a majority rule

consensus tree of the 1000 tree sample from [51] in MESQUITE

v. 3.03 [52] using the PDAP v. 1.16 package [53]. To achieve

normal distribution, the standardized contrasts were log- (Dt,
selective expression, numbers of fast- and slow-degrading caro-

tenoids) or arcsin- (metabolic elongation, ratio of slow/total

carotenoids) transformed. We used general linear models in

SAS v. 9.04 to calculate the least-square means for independent

contrasts and no-intercept multiple regression coefficients.
3. Results
(a) Phylogenetic distribution of traits and correlates of

carotenoid stability
The relationship between the stability of the plumage caro-

tenoids, metabolic elongation, selective expression of

carotenoids, migratory tendency and moult timing is shown

in figure 1. Species in this study expressed 1–19 carotenoids

in their plumage and had up to 24 carotenoids in their bio-

chemical networks. Metabolic elongation and the number

of fast- and slow-degrading plumage carotenoids covaried
with species’ migratory tendency and geographical distri-

bution (electronic supplementary material, table S1). Thus,

in subsequent analyses we statistically controlled for

migratory tendency and geographical distribution. Stability

of the plumage carotenoids (ratio of slow-degrading to total

carotenoids) was strongly correlated with the timing of

moult, metabolic elongation of the enzymatic pathway from

dietary to expressed carotenoids, and the selective expression

of carotenoids (figure 2a). Species with greater metabolic

elongation had higher stability of plumage carotenoids that

was accomplished through both an increase in the ratio of

slow-degrading carotenoids and by selective expression of

these carotenoids in plumage (figure 3). We thus examined

the rate and sequence of evolutionary transitions in the

correlated expression of these parameters.

(b) Evolution of moult timing and carotenoids stability
The evolution of moult timing relative to breeding was strongly

associated with the biochemical stability of the plumage caro-

tenoids (log Bayes factor (BF) . 8.02) and with migratory

tendency (log BF . 4.07). Moult timing was evolutionary

labile, but some transitions were more likely than others

(figure 4a): in species in this study, a pre-breeding moult evolved

subsequently to a post-breeding moult and was less labile than

the stability of the plumage carotenoids (figure 4c). Evolution of

a pre-breeding moult was more likely when ancestral species

were migratory. A single post-breeding moult typically evolved

when ancestors were non-migratory (figure 4b).

(c) Mechanisms of plumage carotenoid stability
The stability of the plumage carotenoids was strongly corre-

lated with metabolic elongation of enzymatic pathways and

the selective expression of slow-degrading carotenoids (log

BF . 17.55 and 15.66, respectively). These two mechanisms

were strongly positively correlated (log BF . 76.98), but

metabolic elongation was more evolutionary labile than the

selective expression of carotenoids (figure 4d ). Greater bio-

chemical stability of plumage carotenoids in species with

longer metabolic pathways was due to the greater number

of newly gained slow-degrading compounds (figure 3d )

and their selective expression in plumage (figure 3c).

(d) Carotenoid degradation during the post-moult
period

The relative concentration of carotenoids in house finch feathers

changed during the post-moult period (figure 2b). The relative

concentration of carotenoids a priori classified as ‘fast-degrading’

(electronic supplementary material, appendix 1; mostly dietary

carotenoids) decreased 27.44+5.34% (mean + s.e.), whereas

http://rspb.royalsocietypublishing.org/
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the concentration of those classified as ‘slow-degrading’

(mostly metabolically modified carotenoids) decreased

7.73+ 3.37% between moult and the second sample 154+6

days later (Kruskal–Wallis test x2 ¼ 5.17, p ¼ 0.02; figure 2c).

4. Discussion
We found that the biochemical stability of plumage carotenoids

increased with the length of the metabolic pathways and with

the selective expression of slow-degrading, metabolically

derived, carotenoids. Species that expressed primarily fast-

degrading, metabolically unmodified, dietary carotenoids

primarily fast-degrading, metabolically unmodified, dietary

carotenoids in their plumage in their plumage had higher evol-

utionary lability of their moult timing. Among these species, an
additional, pre-breeding, moult was gained and lost readily

and repeatedly from an ancestral state of only post-breeding

moult (corroborating the results of [34,35]). Furthermore, the

evolutionary lability of moult timing strongly covaried with

migratory tendency (see also [33,54]): migratory species most

often gained a pre-breeding moult, whereas non-migratory

species most often lost it (figure 4). Conversely, species that

expressed mostly slow-degrading carotenoids, as the result

of metabolic modification or selective expression, had lower

lability of their moult timing and a weaker association between

the stability of plumage carotenoids and moult timing or

migratory tendency.

Evolutionary association among moult timing, migration,

metabolic modification conversion and the ability to selectively

express carotenoids should be proportional to the consistency

http://rspb.royalsocietypublishing.org/
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from dietary compounds, 33 – 66%, corresponding to 3 – 4 enzymatic reactions and more than 66%, corresponding to more than 4 enzymatic reactions). Sample sizes (n)
are shown as numbers of species in each category. Horizontal lines connect means that were not different between groups at a , 0.05. (Online version in colour.)
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of selection for such association. Lineages with access to a

particular set of dietary carotenoids over evolutionary time

might evolve metabolic pathways to convert these compounds

to more slow-degrading forms and then selectively express

the stabilized compounds. This would result in decreased

interdependency between the stability of the plumage caroten-

oids and contemporary ecological factors (figures 2 and 4). At

some stages of this process, such as when species start to use

novel dietary compounds and tend to express them without

modification, temporary gains of a pre-breeding moult might
facilitate use of these fast-degrading compounds in plumage

displays. In turn, gain of an additional moult affects a suite of

life-history traits, including migratory schedule, and could ulti-

mately produce the frequently documented ecological

associations among plumage displays, migration and range

expansion [34,39,55–60].

Could elongate metabolic pathways that convert fast-

degrading dietary carotenoids to slow-degrading carotenoids

be a derived state within avian lineages, whereas direct and

unselective expression of dietary carotenoids, be an ancestral

http://rspb.royalsocietypublishing.org/
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Figure 4. The rate and frequency of evolutionary transitions between the stability of plumage carotenoids, moult timing and migratory tendency given the tree
sample, data and priors. Thick black arrows indicated probable evolutionary transitions (zero-value rate parameters in less than 5% of models visited by the rj-MCMC
chain). Thick grey arrows indicate marginally likely evolutionary transitions (zero-value rate parameters in 5 – 11% of models). Absent arrows indicate improbable
transitions (zero-value rate parameters in more than 19% of models) and n is the number of species. (a) Evolution of a single pre-breeding moult occurs only from
ancestors with both a pre- and post-breeding moult, suggesting an evolutionary cycle in which a post-breeding moult is followed by a dual moult and then a single
pre-breeding moult. Feathers indicate the timing of moult relative to breeding (indicated by a nest with eggs). (b) Evolutionary transitions from a post- to a pre-
breeding moult was dependent on migratory tendency, with migratory species being more likely to gain a pre-breeding moult and non-migratory species more likely
to lose a pre-breeding moult. (c) Evolution of moult timing was strongly correlated with the stability of plumage carotenoids: species with predominantly fast-
degrading carotenoids (green circles) have more labile moult timing than species with predominantly slow-degrading carotenoids (red circles). (d ) The mechanisms
contributing to the stability of plumage carotenoids, elongation of metabolic pathways (i.e. increasing the number of modifications to dietary compounds) and
selective expression of compounds (i.e. not expressing all compounds found in the diet or produced through metabolic modification), were very strongly correlated.
Green circles represent fast-degrading, dietary carotenoids and the remaining circles are produced by metabolic modifications of dietary carotenoids, with red repre-
senting the slowest-degrading carotenoids. Open circles indicate unexpressed carotenoids. Metabolic pathways were considered short if there were less than or equal
to one metabolic modification or elongate if greater than or equal to one modification. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160403

7

 on May 18, 2016http://rspb.royalsocietypublishing.org/Downloaded from 
state? This scenario is unlikely because colour—the ultimate

target of natural selection—is underlain by many factors,

including metabolic conversion, feather keratin integration

and post-deposition degradation of carotenoids, which interact

to produce a multitude of potential evolutionary trajectories.

For example, feather abrasion and the associated degradation

of keratin-imbedded carotenoids can produce a bright colour

that is favoured during mating [17,19,33]. In such a case, a line-

age might evolve moult timing or behavioural activities that

enable the appropriate wear of protective feather structures

and promote the oxidation of imbedded carotenoids. Once a

favourable combination of dietary carotenoid stability,

feather-wear and resulting colour is found, selection stabilizes

and preserves this combination. However, because avian caro-

tenoid pigmentation is dependent on the acquisition of dietary

carotenoids the coevolution of expressed carotenoids, feather
keratins and other morphological or behavioural modifications

is likely to ‘restart’ periodically when a lineage obtains novel

dietary carotenoids. Indeed, on evolutionary timescales,

elongation of carotenoid metabolic pathways was sustained by

the periodic gain of new dietary compounds that connect to

existing metabolic pathways [25]. This implies that the evolution

of metabolic elongation is associated not only with the increased

biochemical stability of derived carotenoids, but also with the

recurrent inclusion of fast-degrading dietary compounds.

Our results corroborated this scenario—the number of fast-

degrading carotenoids did not differ among species with

different metabolic elongation (figure 3e). Instead, the increased

stability of plumage carotenoids in species with the longest

metabolic pathways was caused by the selective expression of

slow-degrading, derived carotenoids (figure 3c). Elongation of

metabolic pathways and selective expression coevolved in

http://rspb.royalsocietypublishing.org/
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birds (figure 4). Evolution of selective expression likely accounts

for the continuity of plumage colour and resulting plumage

ornamentation trends despite the periodic addition of new

fast-degrading dietary carotenoids during lineage evolution.

Connectivity of the enzymatic network that underlies

carotenoid biosynthesis differs among avian clades and

affects the patterns and rates of diversification in plumage

carotenoids across species [25,41,61]. Our results suggest

that a pre-breeding moult (and associated suite of ecological

traits) should be especially prevalent in clades with limited

opportunities for elongation of existing metabolic pathways

or the addition of novel pathways. Similarly, a pre-breeding

moult should be common in clades that consume a wide

range of fast-degrading dietary carotenoids. Alternatively,

these species might evolve protective feather structures

that minimize carotenoid exposure and degradation (e.g.

feather tips).

We found that selective expression of carotenoids (i.e. the

ability not to express the intermediate metabolic stages)

evolves readily in birds (figures 1, 2 and 4), although it had

lesser evolutionary lability than metabolic elongation. Several

carotenoids are usually present in developing feather follicles

and there is evidence that their pattern of selective absorption

is determined by the sequence in which carotenoid precur-

sors and products are delivered to the follicle, competition

for space or binding sites in feather keratin matrix, differences

among carotenoids in their effect on feather structure, or an

evolved specificity of feather keratin–carotenoid associations

[62–65]. The extent to which these mechanisms are evolution-

ary steps or alternative trajectories in the evolution of

selective expression of carotenoids in the plumage is an

open question. Some species produce their plumage color-

ation by consuming and expressing an array of dietary

precursors, intermediates and end products of carotenoid

metabolism, whereas others express only the end products

(e.g. [66,67]). It is likely that selective expression involves

the evolution of specificity in feather keratin–carotenoid

associations and the selective permeability of feather follicles

to certain carotenoids. Within a species, the presence of caro-

tenoid compounds in a follicle was associated with early

structural differentiation of the growing feather [38]. Feather

growth rate, and associated moult duration, was highly vari-

able among individuals, but this did not covary with the type

or concentration of incorporated carotenoids [68]. This

suggests that early organizational effects of carotenoids on

feather development and structure play an important role
in selective uptake and expression of carotenoids. The selec-

tive expression of carotenoids is routinely involved in

modulating plumage polymorphism (species-, age-, sex- or

season-related, [69]), such that the rapid evolution of selective

expression likely involves cooption of existing mechanisms

for the selective association of pigment with the integument.

In sum, the likely coevolution of metabolic pathway

elongation and selective expression of carotenoids might

enable long-term evolutionary trends of colourful plumage

despite the chemical instability of carotenoids that colour it.

Considering metabolic, ecological and life-history traits in

the same phylogenetic framework shows that external eco-

logical factors, such as timing of moult in relation to

breeding and migration schedules, might be most important

in the early stages of plumage ornamentation evolution

within lineages. Subsequent coevolution of metabolic path-

way elongation with the selective expression of derived,

slow-degrading carotenoids results in greater organismal inte-

gration of colourful displays and their decreased dependency

on current ecological factors.
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Supplementary Methods 
 
Carotenoid extraction and identification--.Feather carotenoids were extracted using high-
performance liquid chromatography (HPLC) and feathers from different ornamental areas were 
processed separately. Briefly, feathers were trimmed, and the weighed pigmented portions were 
washed in hexane using Whatman GF/A glass filters and finely ground in 3mL methanol for 10 
min at 20Hz using a Retsch MM301 mixer mill (Newtown, PA), equipped with ZrO grinding jars 
and balls. Carotenoids were extracted using a 0.2µm filter (GHP Arcodisc 13mm Minispike; Pall 
Life Sciences, East Hills, NY), and the filtrate was dried under vacuum at 40C and reconstituted 
in 150µL of HPLC mobile phase (methanol:acetonitrile 50:50, v/v). Carotenoids were quantified 
by injecting 50µL of pigment extract into an HPLC System (Shimadzu Corporation, Pleasanton, 
CA) fitted with an YMC Carotenoid 5.0µm column (250x4.6mm) and guard column (YMC 
America, Allentown, PA). Analytes were eluted at a constant flow rate of 1.1mL/min using 
isocratic elution with 42:42:16 (v/v/v) methanol:acetonitrile:dichloromethane for the first 11 min, 
followed by linear gradient up to 42:23:35 (v/v/v) methanol:acetonitrile:dichloromethane through 
21 min, isocratic elution at this condition until 30 min when it returned with step function to the 
initial isocratic condition at which it was held through 40 min. Carotenoids were detected using a 
Shimadzu SPD-M10AVP photodiode array detector, and data were collected from 200 to 800 nm. 
Peak areas were integrated at 450 or 470 nm depending on the absorbance maximum (λ max) for 
each compound. Peaks were identified by comparison with the retention times of standard 
carotenoid compounds (Sigma-Aldrich, St. Louis, MO; Indofine Chemical, Hillsborough, NJ; 
CaroteNature, Ostermundigen, Switzerland; Santa Cruz Biotechnology, Dallas, TX) and the 
concentrations of compounds (µg/g) were calculated using calibration curves of these standards. 
We then converted these concentrations into percentages of total amount of carotenoids for each 
sample interval and obtained changes in relative concentration between the subsequent samples of 
the same individuals. Changes in relative concentration were averaged across ornamental areas 
for each individual.  
 
(d) Bayesian analyses--.We used a maximum likelihood start for the Markov chain and an 
exponential hyperprior with a uniform distribution of 0 to 100. The chain was run for 41 million 
iterations, with a one million iteration burnin, and was sampled every 20,000 iterations. Each 
analysis was repeated three times to check for stability of the harmonic mean of the likelihoods.  
First, to determine the sequence and rates of transitions between pre-breeding, post-breeding, and 
dual molts we used the program MULTISTATE. Second, to determine the extent to which 
migratory tendencies influence the timing of molt, we tested for the presence and strength of 
correlated evolution and differences in evolutionary lability of molt and migration. Third, to test 
the hypothesis that the biochemical stability of the carotenoids in plumage varies with the timing 
of molt, we compared models of independent and dependent evolution. Our hypothesis would be 
supported if evolutionary transitions between stable and unstable plumage displays were 
correlated with molt timing. The second and third analyses were conducted using the program 
DISCRETE. Changes in stability of expressed carotenoids can be achieved through both 
metabolic modification and by selective expression of carotenoids in plumage (i.e., not depositing 
fast-degrading compounds or increasing the number of slow-degrading compounds deposited in 
the feathers). We examined correlation between these strategies and stability of expressed 
carotenoids using the program DISCRETE.



Appendix 1. Chemical stability of carotenoids in this study. Structural references are from 
Britton et al. [1] unless noted otherwise. 
 
Carotenoid Degradation group Structural features9 
(3R,3’R)-zeaxanthin Fast D, E 
(3S,4R,3'R,6'R) 4-hydroxylutein Fast B, D, E 
(3S,4R,3'S,6'R) 4-hydroxylutein Fast B, D, E 
3'-dihydrolutein Fast B, D, E, H 
7,8-dihydro β-cryptoxanthin2 Fast D, E 
7,8-dihydro-lutein Fast B, D, E 
7,8-dihydro-zeaxanthin3 Fast D, E 
7,8,7',8'-tetrahydro-zeaxanthin2 Fast D, E 
9-Z-7,8-dihydro-lutein2 Fast B, D, E, F 
Anhydrolutein4 Fast B, D, E 
Canary xanthophyll A5 Fast B, D, E, H 
Canary xanthophyll B5 Fast B, D, H 
Cis-lutein Fast B, D, E 
Fucoxanthin Fast B, C, D, E 
Lutein Fast B, D, E 
Phoenicopterone Fast B, D, I 
Piprixanthin6 Fast B, D, E, H 
α-carotene1 Fast A, B 
α-cryptoxanthin Fast B, D, E 
α-isocryptoxanthin Fast B, D, E 
β-carotene1 Fast A 
β-cryptoxanthin Fast D, E 
β-isocryptoxanthin Fast D, E 
(3S,3’S)-astaxanthin Slow D, I, J 
3'-hydroxy-echinenone Slow D, E, I, 
4-hydroxy-echinenone Slow D, E, I 
4-oxo-gazianaxanthin7 Slow D, I, J, L 
4-oxo-rubixanthin7 Slow D, I, J 
Adonirubin Slow D, I, J 
Adonixanthin Slow D, E, I, J 
Canthaxanthin8 Slow D, I 
Echinenone8 Slow D, I 
Gazaniaxanthin Slow D, E, K 
Papilioerythrinone Slow D, E, F 
Rhodoxanthin8 Slow D, H, M 
Rubixanthin Slow D, E, K 
α-doradexanthin Slow B, D, E, I, J 

 
Notes: 1: Experimental trials showed that these carotenoids degrade faster than 
carotenoids with substituted 6-carbon rings [2-5]. 2: Stradi et al. 1998 [6]. 3: Takaichi et 
al. 1996 [7]. 4: McGraw et al. 2002 [8]. 5: McGraw et al. 2001[9]. 6: Hudon et al. 2007 



[10]. 7: Stradi et al. 1997 [11]. 8: Mohamed et al. 2006 [12]. 9: Structural features and 
main references to stability categorization: A–Unsubstituted 6-carbon rings. Absence 
of substituents on the end rings results in multiple potential sites for attack by reactive 
species. Cyclic end-groups are more reactive than the linear polyene chain, due to the fact 
that rings are twisted out of plane resulting in reduced co-planarity with the π-electron 
system of the polyene chain [13, 14]. B–Missing conjugated double bond in one (α-
ionone) or both end-rings (ε-ionone). This increases reactivity by decreasing the number 
of conjugated double bonds [15]. C–Cumulative (consecutive) double bonds. Increases 
reactivity: adjacent double bonds are particularly reactive to light, air and oxygen, and are 
easily rearranged into a conjugated structure [16, 17]. D–Substituted 6-carbon rings. 
Provide a stabilizing effect when compared with unsubstituted 6-carbon rings, but 
strength of stabilization depends on the type of substituent and the position on the ring 
[15, 18]. E–Hydroxy-carotenoids: isolated –OH group in the end-ring. Hydroxylated 
carotenes are susceptible to oxidation and light degradation [19]. Reactivity is greater 
when substituents are in position C3 or C3’due to exposed hydrogens in position C4 and 
C4’ that are allylic to the chromophore and highly reactive to oxidation [20, 21]. F–“Z” 
configuration of the polyene chain. Increases reactivity: The “Z” configuration is less 
stable than the “E” configuration because of steric strain, and making the molecule more 
vulnerable to degradation by oxygen and light [2, 22, 23]. G–Epoxy group: Increases 
reactivity due to ring strain. Fucoxanthin has several weakening groups contributing to its 
overall instability [16, 17]. H–Ketone group in ring position 3 or 3’. The double bond 
does not extend the conjugated π bonds system, and the reactive C4 and C-4’ positions 
are exposed. The 3-keto carotenoids are easily reduced to unstable zeaxanthin [24]. 
Piprixanthin has several destabilizing groups that keep the carotenoid fairly weak [10]. I–
Ketone group in ring position 4 and 4’. Decreases reactivity: Carbonyl groups increase 
the conjugation of the double bond system. They also allow the carotenoid to better 
quench free oxygen, stopping oxygen from reacting with and breaking the backbone, 
such that increasing numbers of carbonyl groups are associated with greater stability of 
carotenoids [21, 25, 26]. J–Alpha-hydroxy ketone (cyclic). Decreases reactivity: when 
exposed to heat the double bond of an alpha-hydroxy ketone is able to rearrange and 
produce an isomeric product. This means that instead of breaking under higher 
temperatures the ring undergoes rearrangement of electrons to maintain its overall 
structure [27]. K–Open ψ–end. Decreases reactivity [28]; L–“Z” configuration near the 
end does not affect the overall stability of the backbone. The stabilizing effect of the 
alpha-hydroxy ketone is greater and makes this carotenoid slow-degrading [29]. M–
Retro-carotenoid. There is a shift in the position of the single and double bonds in the 
polyene chain [30, 31]. 
 
  



REFERENCES – APPENDIX 1 
 
[1] Britton, G., Liaaen-Jensen, S. & Pfander, H. 2004 Carotenoids Handbook. Birlin, Birkhauser. 
[2] Aparicio-Ruiz, R., Mínguez-Mosquera, M.I. & Gandul-Rojas, B. 2011 Thermal degradation 
kinetics of lutein, β-carotene and β-cryptoxanthin in virgin olive oils. Journal of Food 
Composition and Analysis 24, 811-820. (doi:http://dx.doi.org/10.1016/j.jfca.2011.04.009). 
[3] Henry, L.K., Catignani, G.L. & Schwartz, S.J. 1998 Oxidative degradation kinetics of 
lycopene, lutein, and 9-cis and all-trans β-carotene. J. Am. Oil Chem. Soc. 75, 823-829. 
(doi:10.1007/s11746-998-0232-3). 
[4] Ramel, F., Birtic, S., Cuiné, S., Triantaphylidès, C., Ravanat, J.-L. & Havaux, M. 2012 
Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol. 
(doi:10.1104/pp.111.182394). 
[5] Conn, P.F., Schalch, W. & Truscott, T.G. 1991 The singlet oxygen and carotenoid interaction. 
J. Photochem. Photobiol. B: Biol. 11, 41-47. (doi:10.1016/1011-1344(91)80266-K). 
[6] Stradi, R., Hudon, J., Celentano, G. & Pini, E. 1998 Carotenoids in bird plumage: the 
complement of yellow and red pigments in true woodpeckers (Picinae). Comparative 
Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 120, 223-230. (doi: 
10.1016/S0305-0491(98)10033-0). 
[7] Takaichi, S., Sandmann, G., Schnurr, G., Satomi, Y., Suzuki, A. & Misawa, N. 1996 The 
Carotenoid 7, 8-Dihydro-ψ end Group can be Cyclized by the Lycopene Cyclases from the 
Bacterium Erwinia Uredovora and the Higher Plant Capsicum Annuum. Eur. J. Biochem. 241, 
291-296. (doi:10.1111/j.1432-1033.1996.0291t.x). 
[8] McGraw, K.J., Adkins-Regan, E. & Parker, R.S. 2002 Anhydrolutein in the zebra finch: a 
new, metabolically derived carotenoid in birds. Comparative Biochemistry and Physiology Part 
B: Biochemistry and Molecular Biology 132, 811-818. (doi: 10.1016/S1096-4959(02)00100-8). 
[9] McGraw, K.J., Hill, G.E., Stradi, R. & Parker, R.S. 2001 The influence of carotenoid 
acquisition and utilization on the maintenance of species-typical plumage pigmentation in male 
American goldfinches (Carduelis tristis) and northern cardinals (Cardinalis cardinalis). Physiol. 
Biochem. Zool. 74, 843-852. (doi:doi:10.1086/323797). 
[10] Hudon, J., Anciães, M., Bertacche, V. & Stradi, R. 2007 Plumage carotenoids of the pin-
tailed manakin (Ilicura militaris): evidence for the endogenous production of rhodoxanthin from 
a colour variant. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular 
Biology 147, 402-411. (doi: 10.1016/j.cbpb.2007.02.004). 
[11] Stradi, R., Celentano, G., Boles, M. & Mercato, F. 1997 Carotenoids in Bird Plumage: The 
Pattern in a Series of Red-Pigmented Carduelinae. Comparative Biochemistry and Physiology 
Part B: Biochemistry and Molecular Biology 117, 85-91. (doi:10.1016/S0305-0491(96)00271-4). 
[12] Mohamad, S.B., Yousef, Y.A., Melø, T.-B., Jávorfi, T., Partali, V., Sliwka, H.-R. & Naqvi, 
K.R. 2006 Singlet oxygen quenching by thione analogues of canthaxanthin, echinenone and 
rhodoxanthin. J. Photochem. Photobiol. B: Biol. 84, 135-140. 
[13] Handelmann, G.J. 1996 Carotenoids as scavengers of active oxygen species. In Handbook of 
antioxidants (eds. E. Cadenas & L. Packer), pp. 259-314. New York, Marcel Dekker, Inc. 
[14] El-Tinay, A. & Chichester, C. 1970 Oxidation of. beta.-carotene. Site of initial attack. The 
Journal of organic chemistry 35, 2290-2293. 
[15] Britton, G. 1995 Structure and properties of carotenoids in relation to function. The FASEB 
Journal 9, 1551-1558. 
[16] Zhao, D., Kim, S.-M., Pan, C.-H. & Chung, D. 2014 Effects of heating, aerial exposure and 
illumination on stability of fucoxanthin in canola oil. Food Chem. 145, 505-513. 
(doi:http://dx.doi.org/10.1016/j.foodchem.2013.08.045). 
[17] Piovan, A., Sergalia, R., Bresin, B., Rosy, C. & Filippini, R. 2013 Fucoxanthin from Undaria 
pinnatifida: photostability and coextractive effects. Molecules 18, 6298-6310. 
[18] Yahia, E.M. & Ornelas-Paz, J.d.J. 2010 Chemistry, stability and biological actions of 
carotenoids. Fruit and vegetable phytochemicals, 177-222. 



[19] Arita, S., Otsuki, K., Osaki, K.-i., Murata, Y., Shimoishi, Y. & Tada, M. 2014 Reduction in 
photostability by the esterification of B-Cryptoxanthin. Biosci., Biotechnol., Biochem. 68, 451-
453. 
[20] Woodall, A.A., Lee, S.W.-M., Weesie, R.J., Jackson, M.J. & Britton, G. 1997 Oxidation of 
carotenoids by free radicals: relationship between structure and reactivity. Biochimica et 
Biophysica Acta (BBA)-General Subjects 1336, 33-42. 
[21] Terao, J. 1989 Antioxidant activity of β-carotene-related carotenoids in solution. Lipids 24, 
659-661. 
[22] Mordi, R.C. 1993 Mechanism of beta-carotene degradation. Biochem. J. 292, 310-312. 
[23] Etoh, H., Suhara, M., Tokuyama, S., Kato, H., Nakahigashi, R., Maejima, Y., Ishikura, M., 
Terada, Y. & Maoka, T. 2012 Auto-oxidation products of astaxanthin. Journal of Oleo Science 
61, 17-21. 
[24] Tausz, M., González-Rodríguez, Á.M., Wonisch, A., Peters, J., Grill, D., Morales, D. & 
Jiménez, M.S. 2004 Photostress, photoprotection, and water soluble antioxidants in the canopies 
of five Canarian laurel forest tree species during a diurnal course in the field. Flora - 
Morphology, Distribution, Functional Ecology of Plants 199, 110-119. (doi:10.1078/0367-2530-
00140). 
[25] Chabera, P., Fuciman, M., Hribek, P. & Polivka, T. 2009 Effect of carotenoid structure on 
excited-state dynamics of carbonyl carotenoids. Physical Chemistry Chemical Physics 11, 8795-
8803. 
[26] Maoka, T., Yasui, H., Ohmori, A., Tokuda, H., Suzuki, N., Osawa, A., Shindo, K. & 
Ishibashi, T. 2013 Anti-oxidative, anti-tumore-promoting, and anti-carcinogenic activities of 
adonirubin and adonixanthin. Journal of Oleo Science 62, 181-186. 
[27] Rossbach, J., Harms, K. & Koert, U. 2015 alpha-Crotyl-alpha-difluoroboranyloxy-amides: 
Structure and Reactivity of Isolable Intermediates in Stereospecific a-Ketol Rearrangements. Org. 
Lett. 17, 3122-3125. (doi:10.1021/acs.orglett.5b01427). 
[28] Sólyom, K., Maier, C., Weiss, J., Cocero, M.J., Mato, R.B., Carle, R. & Schweiggert, R. 
2014 Structure–response relationship of carotenoid bioaccessibility and antioxidant activity as 
affected by the hydroxylation and cyclization of their terminal end groups. Food Res. Int. 66, 
107-114. (doi:http://dx.doi.org/10.1016/j.foodres.2014.09.004). 
[29] McMurry, J. 2004 Organic Chemistry. 6 ed. Belmont, CA, Thomas Learning. 
[30] Berg, C.J., LaFountain, A.M., Prum, R.O., Frank, H.A. & Tauber, M.J. 2013 Vibrational and 
electronic spectroscopy of the retro-carotenoid rhodoxanthin in avian plumage, solid-state films, 
and solution. Archives of biochemistry and biophysics 539, 142-155. 
[31] Britton, G. 1993 Biosynthesis of carotenoids. In Carotenoids in Photosynthesis (eds. A.J. 
Young & G. Britton), pp. 96-126. Dordrecht, Springer Netherlands. 

 
  



Appendix 2. Sources for data on molt timing, migration, and carotenoids expressed in plumage 
for the study species.  
 
Species name Common name Molt Migration Carotenoids 
Aegithalos caudatus Long Tailed Tit [1]	 [2]	 [3,	4]	
Agelaius phoeniceus Red-winged Blackbird [5]	 [6,	7]	 [8-10]	
Amandava amandava Red Munia (Red 

Avadavat) 
[11]	 [11,	12]	 [13]	

Amandava subflava Zebra Waxbill [14]	 [14]	 [13]	
Bombycilla cedrorum Cedar Waxwing [15]	 [15,	16]	 [3,	8,	17,	18]	
Bombycilla garrulus Bohemian Waxwing [19,	20]	 [16,	19,	20]	 [3,	4]	
Bombycilla japonica Japanese Waxwing [16]	 [16]	 [3]	
Bucanetes githagineus Trumpeter Finch [11]	 [11]	 [4]	
Campephilus leucopogon Cream-backed 

Woodpecker 
[21]	 [21]	 [22]	

Cardinalis cardinalis Northern Cardinal [23]	 [23]	 [8,	24-26]	
Carduelis cannabina Linnet [27]	 [11]	 [3,	28,	29]	
Carduelis carduelis European Goldfinch [30-32]	 [11]	 [3,	33,	34]	
Carduelis chloris European Greenfinch [31]	 [11]	 [33-36]	
 Carduelis citrinella Citril Finch [32]	 [11]	 [3,	34]	
Carduelis cucullata Red Siskin [37]	 [37]	 [3,	4]	
Carduelis flammea Common Redpoll [38]	 [11]	 [3,	39]	
Carduelis hornemanni Hoary Redpoll [40]	 [11]	 [39]	
Carduelis sinica Oriental Greenfinch [41]	 [41]	 [34]	
Carduelis spinoides Yellow-Breasted 

Greenfinch 
[42]	 [42]	 [34]	

Carduelis spinus Eurasian Siskin [11]	 [11]	 [3,	33,	34]	
Carduelis tristis American Goldfinch [43]	 [43]	 [8,	44]	
Carpodacus mexicanus House Finch [45]	 [45]	 [29,	46-50]	
Carpodacus pulcherrimus Beautiful Rosefinch [51]	 [51]	 [4,	39]	
Carpodacus roseus Pallas’ Rosefinch [11]	 [11]	 [3,	28]	
Carpodacus trifasciatus Three-banded 

Rosefinch 
[51]	 [51]	 [4,	39]	

Chlorospingus pileatus Sooty-capped Bush 
Tanager 

[52]	 [47,	53]	 [52]	

Coccothraustes vespertinus  Evening Grosbeak [54]	 [11,	54]	 [55]	
Coereba flaveola Bananaquit [56]	 [11]	 [56]	
Colaptes auratus Northern Flicker [57]	 [57,	58]	 [3]	
Colaptes campestris Campo Flicker [21]	 [21]	 [22]	
Colaptes chrysoides Gilded Flicker [59]	 [59]	 [3]	
Dendrocopos major Great Spotted 

Woodpecker 
[6]	 [6]	 [3,	22]	

Dendroica coronata Yellow-rumped 
Warbler 

[60,	61]	 [11,	60]	 [10]	

Dendroica palmarum Palm Warbler [62]	 [62]	 [10]	
Dendroica petechia Yellow Warbler [61,	63]	 [63]	 [55]	
Dryocopus pileatus Pileated Woodpecker [64]	 [64]	 [22]	
Emberiza citrinella Yellowhammer [65]	 [65]	 [3,	4]	
Emberiza melanocephala Black-headed Bunting [65]	 [65]	 [3,	4]	



Erithacus rubecula European Robin [16]	 [16]	 [4]	
Erythrura gouldiae Gouldian Finch [66]	 [66]	 [4]	
Erythrura psittacea Red-headed Parrot 

Finch 
[67]	 [67]	 [4]	

Eudocimus ruber Scarlet Ibis [68]	 [69]	 [70]	
Euplectes afer Yellow-crowned 

Bishop 
[71]	 [71,	72]	 [4,	73]	

Euplectes ardens Red-collared 
Widowbird 

[74,	75]	 [76]	 [77]	

Euplectes axillaris Red-shouldered 
Widowbird 

[74,	75]	 [73]	 [75]	

Euplectes capensis Yellow Bishop [78,	79]	 [79,	80]		 [4]	
Euplectes macroura Yellow-mantled 

Widowbird 
[77,	81]	 [81,	82]	 [77]	

Euplectes orix Southern Red Bishop [83]	 [83]	 [4,	73]	
Ficedula zanthopygia Korean Flycatcher [84,	85]	 [86]	 [4]	
Foudia madagascariensis Red Fody [87]	 [88,	89]	 [4,	88]	
Fringilla coelebs Chaffinch [31,	75]	 [11]	 [3]	
Fringilla montifringilla Brambling [90]	 [11]	 [10]	
Geothlypis trichas Common Yellowthroat [61,	91]	 [91]	 [55,	92]	
Icteria virens Yellow-breasted Chat [93]	 [93]	 [94]	
Icterus galbula Northern (Baltimore) 

Oriole 
[95]	 [95]	 [24]	

Ilicura militaris Pin-tailed Manakin [96]	 [97]	 [98]	
Larus delawarensis Ring-billed Gull [99]	 [99]	 [100]	
Larus pipixcan Franklin’s Gull [101]	 [101]	 [100]	
Leiothrix argentauris Silver-eared Mesia [102]	 [103]	 [4]	
Leiothrix lutea Pekin Robin [104]	 [105]	 [3,	4]	
Loxia curvirostra Red Crossbill  [106]	 [11	,	106]	 [3,	28,	33,	107,	

108]	
Loxia leucoptera White-winged 

Crossbill 
[109]	 [7,	109]	 [3,	24,	107,	110]	

Luscinia calliope Siberian Rubythroat [111]	 [16]	 [3,	4]	
Malurus melanocephalus Red-backed Fairy-

Wren 
[112-114]	 [115,	116]	 [117]	

Masius chrysopterus Golden-winged 
Manakin 

[96,	118]	 [97]	 [98]	

Melanerpes candidus White Woodpecker [21]	 [21]	 [22]	
Melanerpes lewis Lewis’s Woodpecker [119]	 [119,	120]	 [22]	
Motacilla flava Yellow Wagtail [121]	 [122]	 [4]	
Mycerobas carnipes White-winged 

Grosbeak 
[123,	124]	 [123]	 [10]	

Mycerobas icteroides Black-and-yellow 
Grosbeak 

[125]	 [126]	 [10]	

Neochmia ruficauda Star Finch [127]	 [127]	 [13]	
Nesospiza acunhae Tristan Bunting [128]	 [65]	 [128]	
Notiomystis cincta Hihi (Stitchbird) [129]	 [129]	 [130,	131]	
Oriolus oriolus Golden Oriole [75]	 [75]	 [4]	
Oriolus xanthornus Black-Hooded Oriole [65]	 [65]	 [4]	
Parus ater Coal Tit [2]	 [2]	 [3]	
Parus caeruleus Blue Tit [132]	 [132]	 [3,	133]	



Parus major Great Tit [31,	132]	 [134]	 [3,	135-140]	
Parus spilonotus Yellow-cheeked Tit [141]	 [142]	 [4]	
Pericrocotus flammeus Scarlet Minivet [11]	 [11]	 [3]	
Pheucticus ludovicianus Rose-breasted 

Grosbeak 
[11,	143]	 [11,	143]	 [8,	24]	

Phoeniconaias minor Lesser Flamingo [144]	 [144]	 [145]	
Phoenicoparrus andinus Andean Flamingo [146]	 [141,	147]	 [148]	
Phoenicoparrus jamesi James’s Flamingo [146]	 [147]	 [148]	
Phoenicopterus chilensis Chilean Flamingo [146]	 [141,	147]	 [145]	
Phoenicopterus roseus Greater Flamingo [146,	149,	

150]	
[11,	151]		 [148]	

Phoenicopterus ruber American Flamingo [146]	 [146]	 [148,	152]	
Picoides tridactylus Three-toed 

Woodpecker 
[6]	 [11,	153]	 [22]	

Picoides villosus Hairy Woodpecker [6]	 [6]	 [22]	
Picus viridis Green Woodpecker [6]	 [6]	 [22]	
Pinicola enucleator Pine Grosbeak [154]	 [11,	154]	 [3,	4,	28,	33,	107]	
Pipra chloromeros Round-tailed Manakin [96]	 [97]	 [155]	
Pipra erythrocephala Golden-headed 

Manakin 
[156]	 [97,	156]	 [155]	

Pipra rubrocapilla Red-headed Manakin [96,	157]	 [97]	 [155]	
Piranga flava Hepatic Tanager [158]	 [158]	 [24]	
Piranga ludoviciana Western Tanager [159]	 [159]	 [24]	
Piranga olivacea Scarlet Tanager [160]	 [160]	 [8,	24]	
Piranga rubra Summer Tanager [161]	 [161]	 [24]	
Platalea ajaja Roseate Spoonbill [162]	 [162]	 [4,	163]	
Ploceus bicolor Forest Weaver [164]	 [164]	 [4]	
Ploceus capensis Cape Weaver [75,	78,	

164]	
[75]	 [4]	

Ploceus cucullatus Village Weaver [71]	 [11]	 [4,	165]	
Ploceus philippinus Baya Weaver [166]	 [166]	 [4]	
Ploceus sakalava Sakalava Weaver [167]	 [168]	 [4]	
Ploceus velatus African Masked 

Weaver 
[83]	 [83]	 [4]	

Pyrrhula pyrrhula Eurasian Bullfinch [11]	 [11]	 [3,	28]		
Quelea cardinalis Cardinal Quelea [71,	72]	 [71,	72]	 [4]	
Quelea erythrops Red-headed Quelea [75,	164]	 [169]	 [4]	
Quelea quelea Red-billed Quelea [83]	 [83]	 [4]	
Regulus regulus Goldcrest [170]	 [170]	 [3]	
Regulus satrapa Golden-crowned 

Kinglet 
[171]	 [171]	 [172]	

Rhodopechys obsoletus Desert Finch [11]	 [11]	 [3,	4]	
Serinus canaria Common Canary [11]	 [11]	 [4,	165]	
Serinus mozambicus Yellow-fronted Canary [71]	 [71]	 [3,	4]	
Serinus pusillus Red-fronted Serin [11]	 [11]	 [3,	29,	34]	
Serinus serinus European Serin [11]	 [11]	 [3,	34]	
Setophaga ruticilla American Redstart [61,	173,	

174]	
[61,	173]	 [10]	

Sicalis flaveola Saffron Finch [175,	176]	 [176]	 [10]	



Sphyrapicus varius Yellow-bellied 
Sapsucker 

[177]	 [177]	 [22]	

Sterna elegans Elegant Tern [6]	 [6]	 [178]	
Telophorus sulfureopectus Sulfur-breasted 

Bushshrike 
[75]	 [179]	 [4]	

Tichodroma muraria Wallcreeper [121]	 [180]	 [3]	
Uragus sibiricus Long-tailed Rosefinch [51]	 [181]	 [3,	4,	28,	39]	
Vermivora ruficapilla Nashville Warbler [61,	182]	 [182]	 [183]	
Vermivora virginiae Virginia’s Warbler [184]	 [184]	 [183]	
Zosterops japonicus Japanese White-eye [11,	185]	 [186]	 [3]	
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Table S1.  Analysis of covariance of independent linear contrasts of carotenoid and molt 
parameters. 
 
Dependent variable Covariates 

 Migratory status Geographic distribution 

 F P F P 

Slow degrading carotenoids 0.18 0.67 4.03 0.04* 

Fast degrading carotenoids 2.68 0.08 3.71 <0.01* 

Total carotenoids 2.04 0.15 3.32 0.01* 

Stability, ratio 0.47 0.49 1.16 0.33 

Selective expression, ratio 0.07 0.78 0.15 0.96 

Metabolic elongation, reactions 5.85 0.01* 1.91 0.17 

Time to molt, days 10.19 <0.01* 4.62 <0.01* 
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