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Altitudinal variation in sexual dimorphism:
a new pattern and alternative hypotheses

Alexander V. Badyaev
Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA

The colder climate and disjunct distribution of nesting and foraging habitats at high elevations increases the necessity of
biparental care for successful breeding in birds. If differences in parental investment between the sexes correlate with intensity
of sexual selection, the intensity of sexual selection should covary with ecological factors associated with elevation. I used sexual
dimorphism as an indirect measure of intensity of sexual selection and examined variation in sexual dimorphism in 126 extant
species of cardueline finches. I controlled for phylogeny and potential confounding factors and tested the prediction that the
extent of sexual dimorphism negatively covaries with elevation of breeding. As predicted, interspecific variation in sexual di-
morphism was more strongly associated with changes in elevation than with habitat, nest dispersion and placement, and migra-
tory status. Species occupying lower elevations were more sexually dimorphic in plumage than species at higher elevations. This
variation was largely due to increased brightness of male plumage at lower elevations. I address possible explanations of this
trend, which may include increased opportuniges for extrapair fertilizations at lower elevations, an increase in the cost of
secondary sexual trait production (i.e., molt) and maintenance at high elevations, and elevational variation in predation pres-
sure. Key words: cardueline finches, elevation, plumage brightness, sexual dimorphism, sexual selection, [Behav Ecol 8:675-690

(1997)]

Varial.ion in sexual selection arising from variable mating
opportunities and mating competition can exert strong
selection on sexual dimorphism (Andersson, 1994; Kirkpa-
trick and Ryan, 1991; Williams, 1992). As a result, interspecific
variation in the extent to which each sex contributes to pa-
rental care may influence sexual dimorphism because of the
possible effects of parental investment on sexual selection; the
sex with greater parental investment (typically female) is gen-
erally sought by a greater number of potential mates and has
greater mating opportunities, while the sex with less invest-
ment (often male) usually suffers more mating competition
(Trivers, 1972). Thus, variation in ecological determinants of
parental investment should cause variation in sexual dimor-
phism (reviewed in Andersson, 1994).

Male parental investment can differ among species with
variation in ecological factors such as climate or resource
(e.g., foraging or nesting sites) distribution (Andersson,
1994). For example, a colder nest microclimate is thought to
favor increased male investment and, thus, greater biparental
care in birds (Lyon and Montgomerie, 1987). Spatial separa-
tion of nesting and feeding resources is also thought to favor
greater male care because incubating and brooding females
cannot obtain adequate food resources on their own (Bad-
yaev, 1993, 1994; Frev, 1989b; Kovshar, 1979). Consequently,
areas with cold climates and disjunct feeding and nesting re-
sources should favor greater male care. Such conditions are
characteristic of high-elevation sites (e.g., Kovshar, 1979). Al-
though there is some evidence that males provide most of the
food for incubating and brooding females in a number of
highland and arctic species and populations (e.g., Badyaey,
1993, 1994; Frey, 1989a; Kovshar, 1979; Lyon et al., 1987; Pul-
lianen, 1979), no comparative studies have addressed eleva-
tional variation in male parental care. Here I examine wheth-
er male parental care varies with elevation.

High male parental investment demands high paternity as-
surance (i.e., reduced solicitaion by females of extrapair
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males and high solicitation of social mates), which along with
greater synchronization of nesting among neighboring pairs,
could reduce opportunities for extrapair fertilizations (Mgller
and Birkhead, 1993; Westneat et al., 1990; Westneat and Sher-
man, 1993). Increased male parental care is thought to be
one of the major benefits of female breeding synchrony
(Knowlton, 1979). Greater synchronization of breeding and
shorter nesting season at higher elevation (Kovshar, 1979) also
could affect the extent and cost of mate search and thus in-
fluence the intensity of sexual selection (Andersson, 1994).
Thus, in monogamous species, the intensity of sexual selection
should covary with ecological factors associated with the ele-
vation of a species’ distribution. Sexual dimorphism often has
been used as a measure of the intensity of sexual selection in
both interspecific (Barraclough et al., 1995; Fitzpatrick, 1994;
Hamilton and Zuk, 1982; Mgller and Birkhead, 1994) and
population-level studies (Hill, 1991; Price, 1984). Using vari-
ation in sexual dimorphism as an indirect measure of the in-
tensity of sexual selection, I examined the resulting prediction
that the extent of sexual dimorphism decreases with elevation.

A number of factors besides colder climate and male care
could covary with elevation. For example, altitudinal variation
in predation pressure, parasite loads, diet, molt duration, and
physiological constraints could affect the expression of sec-
ondary sexual traits potentially independently of changes in
intensity of sexual selection (Badyaev, 1997b). I also examined
these alternative hypotheses.

In this study I used a phylogenetic approach to determine
the relative roles of various ecological factors on the degree
and form of sexual dimorphism in the cardueline finches.
These birds exhibit extensive variation in sexual dimorphism
among closely related taxa and even within species (Table 1).
Cardueline finches occupy a wide variety of habitats and geo-
graphic areas, and selection pressures imposed by variable
habitats affect the social structure of breeding populations
(Boehme, 1954; Frey, 1989b; Newton, 1973). Because the cur-
rent phenotype of a species is the result of both current se-
lection and historical factors, interspecific studies are especial-
ly useful when they incorporate information on the direction
of phylogenetic change (Baum and Larson, 1991; Bjérklund,
1991; Felsenstein, 1985; Harvey and Pagel, 1991). Orogenic
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Phylogenetic hypothesis for the taxa used in analyses. The phylogeny represents a consensus tree based on molecular, karyotypic,

paleontological, morphological, and behavioral data (see Methods for references).
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processes and corresponding changes in elevation are closely
associated with speciation and the distribution of present car-
dueline taxa (Banin, 1987, 1988; Boehme, 1975; Clement et
al., 1993; Kozlova, 1975; Vaurie, 1972), which allow the his-
torical directon of evolutionary change to be traced. Thus,
cardueline finches offer an unusually good opportunity to ex-
amine factors that might influence the evolution of dimor-
phism in secondary sexual traits. Although in this paper I deal
only with interspecific data on elevation, I believe that the
patterns and arguments pertain to latitude and populations
as well.

METHODS

Plumage brightness and dimorphism were assessed by two per-
sons, unaware of the questions to be investgated, from illus-
tradons of males and females in Clement et al. (1993). The
overall brightness of each sex was scored on a scale from 1 to
6 (after Hamilton and Zuk, 1982). Sexual dimorphism in
plumage brightness was computed by subtracting the mean
female score from the mean male score (e.g., Mpller and Birk-
head, 1994). Two independent observers also scored dichro-
matism for three body regions: rump, breast, and head. Di-
chromatism was recorded for each body region as 0 if there
was little or no dichromatism, 1 for moderate dichromatism,
and 2 for high dichromatism (e.g., Irwin, 1994). The plumage
dichromatism index was then the mean sum of scores for the
three regions between the two observers. Mean interscorer
values were used in analyses. There was a strong positive cor-
relation between scorers for rump (Spearman r = .69, p <
.001), breast (r = .89, p<< .001), and head dichromatism (r =
.89, p < .001) and overall brightness scores (males: r = .79,
£< .0001, females: r = .65, p < .001). To examine biases in
observers’ scoring, scores provided by human observers in this
study were compared to scores for brighmess, saturation and
hue obtained for the same data set by using the Colortron
scoring device (Badyaev AV and Hill GE, unpublished manu-
script). There was close agreement between the observers’
and Colortron scoring for all body regions and dimorpshim
measures (all 7s >0.65, p<< .0001; Badyaev AV and Hill GE,
unpublished data). Sexual size dimorphism was calculated as
[log (male trait) — log (female trait)]. I used log (female
wing) as a measure of body size.

I gathered published data for 126 extant cardueline species
(Appendices A and B) on body size, nest dispersion, nest
placement, migratory status, social system, and habitat type
because these factors have been proposed to account for in-
terspecific variation in plumage and size dimorphism (Baker
and Parker, 1979; Bjorklund, 1990b; Fitzpatrick, 1994; Irwin,
1994; Webster, 1992; see- Appendix B for definitions). In car-
duelines, nest dispersion and social system may vary with al-
titude and habitat type; finches tend to form nest aggregations
and are more gregarious at high elevations, often indepen-
dendy of habitat type (Badyaev, 1993, 1994, unpublished
data). Sexual dimorphism in size and coloration can also vary
with body size (e.g., Webster, 1992); thus, I controlled for body
size in ANCOVA on independent contrasts (see below) for
plumage and size dimorphism (see Bjorklund, 1990b). In car-
duelines, data on parasite infestation were available for 19 spe-
cies (Greiner et al., 1975; Peirce, 1981), extent of hybridiza-
tion for 24 species (Panov, 1989), and nest predation data for
12 species (data summarized in Martin and Badyaev, 1996).

I constructed the working phylogenetic hypothesis of car-

dueline finch subfamily (Figure 1) by summarizing all recent
systematics data available for each clade (Bartherl et al., 1992;
Chrisddis, 1980; Clement et al., 1993; Desfayes, 1971; Groth,
1994; Herremans, 1990; Irwin, 1961; Marten and Johnson,
1986; Nemeschkal et al., 1992; Newton, 1973; Panov, 1989;
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Ruelle, 1986a; Sibley and Ahlquist, 1990; Stempel, 1987; van
den Elzen and Classen, 1992; van den Elzen and Nemeschkal,
1991; Vaurie, 1956). Most of the disagreements among pub-
lished phylogenetic hypotheses were in relation to the status
of the Serinus group: species Carpodacus synoicus, Pinicola
subhimachala, and Rhodopechys githaginea. All suggested sub-
stitutions with these species were tried and trends reported
here were essendally the same independent of specific phy-
logeny used. I set branch lengths as equal because such data
were available only for a few species. All extant cardueline
species were included in the phylogenedc tree, and plots of
standardized contrasts against the variances of the untrans-
formed contrasts (see below) showed no significant correla-
tion, thus justifying the use of equal branch lengths (Purvis
and Rambaut, 1995).

To control for species relatedness within the subfamily, I
analyzed data using pairwise comparisons, independent linear
contrasts, and genus-nested ANCOVA (in plumage brightness
analyses; genera were divided into monophyletic groups based
on the phylogeny in Figure 1) (Felsenstein, 1985; Harvey and
Pagel, 1991; Martins and Garland, 1991; Pagel, 1994; Purvis
and Garland, 1993). In pairwise comparisons, pairs of closely
related species (Badyaev 1997a: Appendix 2) (Figure 1) were
ranked by potential effect and then compared with respect to
dimorphism (e.g., Moller and Birkhead. 1994). I then tested
any concordance with prediction using a sign test. This meth-
od provides the most direct test of concordance between al-
titude and dimorphism because it makes fewer assumptions
about phylogenetic relations among clades in the subfamily.

I also analyzed data using the independent contrast method
of Felsenstein (1985) and incorporating the methods of Purvis
and Garland (1993) for incompletely resolved phylogenies,
based on the software described by Purvis and Rambaut
(1995). By using this method I assumed that different clades
are equally likely to develop similar proportional changes in
each variable included in independent contrast computations.
None of the regressions of absolute values of contrasts versus
their estimated nodal values showed significant slopes, thus
validating the assumpton (Purvis and Rambaut, 1993). To ex-
amine the influence of categorical factors, dummy variables
were created for potential covariates and then phylogeneti-
cally transformed as described in Purvis and Rambaut (1995).
Regression models were then used on the independent con-
trasts to test the influence of factors after potential covariates
were entered into the model (Garland et al., 1992; Martn and
Badyaev, 1996). Statstical significance of categories was tested
by the cumulative change in sums of squares when these dum-
my variables were entered as a group (see Martin and Clobert,
1996). All regressions were forced through the origin (Gar-
land et al.,, 1992). All morphological measures were log-trans-
formed and standardized with mean zero and unit variance.

Pairwise comparisons potentally reduce the importance of
confounding factors because related taxa usually are similar
in ecology and morphology (e.g., Moller and Birkhead, 1994).
However, because a number of potendally confounding vari-
ables such as habitat and nest dispersion varied even between
closely related taxa, I report results from all methods.

RESULTS
Sexual dimorphism

Plumage dimorphism

Twenty-five pairs of closely related species and subspecies had
data on both plumage dichromatsm index and elevaton. In
18 (72%) of these pairs, species with higher altitudinal distri-
bution exhibited lower sexual dichromatism (sign test. p =
.02). Twenty-three pairs showed variation in elevation and di-
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Table 1
Sexual dimorphism in cardueline finches

Dimorphism Brightness
Genus (no. of species) Plumage Weight  Wing Tarsus Tail Bill Male Female
Callacanthis (1) 5.0 NA 1.04 1.00 1.05 1.00 3.0 2.0
Carduelis (32) 1.9 (5.5) 1.01 1.00 1.01* 1.02 1.01*> 3.0 (4.3)** 2.5 (3.0)
Carpodacus (22) 5.3 (2.0) 0.99 1.03** 1.01* 1.03** 1.01>* 3.2 (25) 1.5 (1.0
Eophona (2) 1.0 (2.0) NA 1.07* NA 1.00 1.04 2.7 (0.3) 2.7(0.3)
Haematospiza (1) 6.0 1.02 1.04 1.00 1.07 1.00 6.0 2.0
Coccothraustes (3) 3.0 (3.5) 1.04 1.02%* 0.99 1.03** 1.02 3.8 (0.3) 2.7 (1.3)
Leucosticte (3) 0.5 (2.0) 1.09 1.04%* 1.00 1.04* 0.99 1.3 (1.0) 1.4 (1.0)
Linurgus (1) 3.0 1.00 1.05 1.00 1.00 1.00 4.0 2.0
Loxia (4) 5.7 (1.0) 1.05 1.03** 1.00 1.04*> 1.03** 3.6 (1.0)*= 1.8(0.5)
Mycerobas (4) 4.4 (2.5) 1.13 1.20 1.01** 1.02 1.01 4.0 (3.5) 2.1 (2.0
Neospiza (1) 0.0 NA 1.00 1.00 NA 1.00 2.0 2.0
Pinicola (2) 6.0 (0.0) 1.01 1.04 0.99 1.01 1.01== 3.5 (0.0) 2.2(0.5;
Pyrrhoplectes (1) 6.0 1.00 1.03 1.00 1.06 1.00 25 2.0
Pyrrhula (6) 2.2 (4.0) 1.01 1.01 1.01* 1.01 1.01== 3.1 (1.0)y== 2.2 (1.0)
Rhodopechys (4) 2.2 (3.3) 1.01 1.03 1.03 1.0+ 1.00 2.4 (1.0) 1.5 (1.9)
Rhynchostruthus (1) 0.0 1.00 1.00 1.00 NA 1.00 3.0 3.0
Serinus (38) 1.0 (4.0) 0.99 1.02** 1.01 1.01 1.00 2.2 (3.5)*= 2.0 (2.3)
Uragus (1) 5.0 1.31 1.03 1.00 1.06 1.00 35 1.5
Urogynchramus (1) 5.0 NA 1.00 NA NA 1.00 2.5 1.5

NA, data not available. Sexual dimorphism is expressed as a ratio of male trait to female trait using untransformed values. Plumage
dimorphism is a mean score of plumage dimorphism among species in a genus. Ratios = 1.0 represent no dimorphism and ratos
increasingly different from 1.0 represent increasingly greater dimorphism). Differences of means were used for statistical tests. Probabilice

levels are for one-way ANOVA.
*p<.l,*™p < .05

morphism in brightness, and 17 (74%) of these pairs showed
lower dimorphism in brightness with higher altitudinal distri-
bution (sign test, p = .03). Species dwelling in closed habitats
were more sexually dimorphic in plumage dichromatism in-
dex than related species in open habitats (sign test: 15 of 19,
p = .009). However, species occupying closed habitats were
no more sexually dimorphic in plumage brightness than their
open-habitat relatives (sign test: 6 of 16, p > .2). Only four
pairs of species had variation in nest dispersion, but all four
showed that species that nested solitarily were more dimor-
phic than species that nest in aggregatons or colonies (sign
test: 0 of 4, p = .06). Sexual dichromatism was not associated
with migratory status, although resident species tended to be
less sexually dimorphic than their migrant relatives (sign test:
5 of 15, p =.1). When phylogenetic history was incorporated
into the model using independent contrasts and body size was
controlled, the plumage dichromatism index varied negatively
only with elevation and migratory status (Tables 2 and 3, Fig-
ure 23). Simil:i.rly, dimorphism in brightness negatively co-
varied only with elevation (Table 2, Figure 2B)

Because only two variables can be compared at one time
using the pairwise comparison method, the comparisons of
dichromatism with habitat and migratory status were not con-
trolled for elevation effects. When potental factors were ex-
amined together in multiple regression analyses, the effect of
habitat on sexual dimorphism in plumage was not significant
(Table 2). Thus, changes in sexual dichromatism were most
persistently associated with elevaton. Species occupying lower
elevadons were more sexually dimorphic in plumage than
higher-levation species.

Body size and ornament dimorphism

In pairwise comparisons, elevation was not associated with
wing, til, tarsus, or bill dimorphism (sign tests, all p > .2).
Dimorphism tended to be greater in species that dwell in
open habitats than in closed habitats, but the association was
not significant for wing (8 of 21, p > .2), wil (4 of 11, p >

.2), tarsus (4 of 11, p > .2), or bill (3 of 12, p > .07) dimor-
phism. Variations in nest dispersion and nest placement were
not related to body size dimorphism in pairs of closely related
species (both p > .2). Resident species were less dimorphic
than their more migratory relatives in wing dimorphism (sign
test: 3 of 16, p = .01), but migratory status was not associated
with tail, tarsus, or bill sexual dimorphism (all p >.4). When
phylogenetic history was incorporated into the analysis via in-
dependent contrasts and body size effects were controlled,
only wing dimorphism showed significant negative variation
with altitude (Table 2, Figure 2C). Species that occupied lower
elevations were more dimorphic in wing length than highland
species.

Overall, dimorphism in plumage was the most variable and
prevalent form of sexual dimorphism in the subfamily (Tables
1 and 2). Variation in elevation of breeding was the strongest
negative predictor of plumage dimorphism.

Plumage brightness

Males

In pairwise comparisons, males in 19 of 25 (76%) pairs of
species had brighter plumage at lower elevadons than their
highland relatves (p =.007). Similarly, male plumage bright-
ness was negatively correlated with elevation when the inde-
pendent contrast method was used (n = 64, Pearson r= —.28,
p = .002). In the multple regression model, only alttude
(Bsy= —.50, t = =255, p =.01), nest placement (Bs= —.49,
t = —2.65 p = .02), and nest dispersion (Be= —.39, ¢t =
—1.89, p = .07) accounted for variation in male brightness.
However. nest placement did not account for any portion of
the variaton in male brightness (percentage of variance =
0.0, F = 97, p = .5) in the genus-nested ANCOVA. Thus,
variation in male plumage brightness was most consistently
associated with elevation.
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Standardized coefficients from multiple regression of sexual dimorphism traits of cardueline finches on potential effects while correcting for

phylogeny using the method of linear contrasts

Dependent variables

Predictors Plumage Brightness Tail Tarsus Wing Bill
Covariate }
Body size —0.33** —0.50%* 0.24 —0.73** —-0.26 —0.59%*
Nest placement 0.06 0.19 —0.03 0.06 —-0.08 -0.19
Factors
Maximum altirude —0.56%* —0.49%* 0.00 0.22 —0.54%* -0.29
Habitat type -0.27 0.00 0.36 -0.02 —-0.18 —0.26
Nest dispersion —0.24 0.18 0.05 -0.23 0.46 0.25
Migratory status -0.38 —0.23 ~0.34 -0.01 —-0.25 0.40
Model R2 0.59** 0.52** 0.31 0.41 0.46** 0.55%*

p value is for H,: parameter = 0; ** indicates significance at a = 0.05 level after correction using the model-wide sequential Bonferroni tests:

all others nonsignificant.

Females
Female plumage brightmess was not significantly associated
with elevation (sign test: 10 of 24, p > .2) when pairwise com-
parisons were used, but varied with nest placement (Bg=
—.47,t= —220, p = .04) and altitude (Bsr= —.40, ¢ = —2.22,
p = .04) when independent contrasts were used. In the genus-
nested ANCOVA, nest placement was a highly significant pre-
dictor of female brightness (2 = .43, F = 2.15, p = .02).
Thus, females show no consistent pattern of brightness vari-
ation with altitude and a significant association with nest
placement. Given that plumage and brightness dimorphism
showed strong elevational patterns, I conclude that variation
in brightmess dimorphism between males and females is large-
ly due to variation in male brightness; females of high- and
low-altitude species were equally dull (or bright), while male
brightness varied the most along elevation. Variation in male
plumage brightness also contributed the most (r,=.64, p <
.001) to the variation in overall brightmess dimorphism.

Plumage index dichromatism

Variation in rump dichromatism was most closely related to
nest placement (Table 3). When body size was controlled, vari-
ation in sexual dimorphism in breast and head plumage was
most closely associated with changes in breeding “elevation

Table 3

(Table 3). Head plumage dimorphism contributed the most
to the overall dimorphism index (Bsr= .49), followed by
breast and rump dimorphism (Table 3).

Altitude and male parental care

To test the assumption that male parental investment increas-
es with altitude, I used independent contrasts to examine the
relatonship between altitude and the number of days when
males provide >65% of the food for the brooding females
and nestlings during the nestling period (65% was the closest
to the 50% esdmate obtainable from studies). Because the
number of days the female has to brood nestlings varies sig-
nificantly with weather conditions during observaton, the
mean values of at least three field seasons per species were
used (Badyaev, 1993, 1994; Cramp and Perrins, 1994; Coutlee,
1968; Kovshar, 1979; Linsdale, 1957) (Figure 3). I included
clutch size in the regression model to control for brood size
variation between elevations (Badyaev, 1997a). Elevation was
a highly significant positive predictor of the number of days
the male provides >65% of food for the nestlings and brood-
ing female (Figure 3).

Standardized coefficients from multiple regression of plumage dimorphism traits of cardueline finches
on potential effects while correcting for phylogeny using method of linear contrasts

Dichromatism index

Predictor Rump Head Breast
Covariates
Body size 0.20 —0.37%x* —0.44%>
Nest placement 0.72%xx -0.10 ~0.08
Factors
Maximum altitude 0.24 —0.58%** —0.47***
Habitat type 0.00 0.20 0.08
Nest dispersion -0.35 0.26 0.18
Migratory status 0.08 —0.16 —0.20*
Model R* 0.67*%** 0.56%** 0.59%»=*
% of total index variance 13.71 79.00 0.07

p value is for H,: parameter = 0; * p <1, ** p < 03; *=x p<.

01; all others nonsignificant.
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Figure 2

Partial regression residual plots of data transformed by the method
of standardized independent contrasts (which controls for possible
phylogenetic effects) illustrating the relationship between elevation
and sexual dimorphism in (A) plumage dimorphism index, (B)
plumage brightness, and (C) wing length.

Altitude and parasite infestation, nest predation, and extent
of hybridization

Blood parasite level did not correlate with maximum elevation
(independent contrasts, Spearman r = .01, p = .72), but weak-
ly posidvely correlated with minimum elevation (r = .32, p =
.02). However, in the 19 species investigated, blood parasite
level was not related to variation in either male or female
plumage brightness or plumage dichromatism (both r < .005,
p>.7.

Nest predation rate was weakly negatively correlated with
minimum elevation (independent contrasts, Spearman r =
.27, p = .08), but not with maximum elevation (r = .002, P
= .63). In nested ANCOVA, nest predation significantly de-
creased with elevation only in Carpodacus and Leucosticte
finches. In the 12 species investigated. nest predation was
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Figure 3

The relationship between linear contrasts of the number of davs a
male provides >65% of food to brooding female (male parental
care; see text for details) and linear contrasts for elevaton of
observation site (R* = 0.73, F,,, = 34.59, p=.0001; B4=.85, ¢ =
5.89, p < .0001). The data are for the following species: Sertnus
pusillus (Tien-Shan), S. pusillus (Pamir-Alai), C. carduelis carduelis,
C. carduelis caniceps, C. tristis, C. psaltria, C. lawrenca. Leucosticte
nemoricola, Carpodacus e. erythrinus, Carpodacus e. ferghanensis,
Loxia curvirostra, Eophona migratoria, Mycerobas carnipes (Tien-
Shan), and M. carnipes (Pamir-Alai).

weakly positively correlated with sexual dimorphism in plum-
age (Spearman r = .28, p =.09) and tended to correlate pos-
itively with plumage brightness in males (r= .25, p =.11) but
not in females (=.01, p = .77).

The number of hybrids each species is known to form with
other species correlated positvely with extent of plumage di-
morphism (independent contrasts; brightmess dimorphism: n
= 2], r = .44, p = .005; weakly with dichromadsm index: r =
.33, p= .10) and plumage brightness in males (r = .26, p =
.11) but not in females (r = —.003, p = .98). In the 24 species
examined, extent of hybridization did not significanly corre-
late with elevation (all probabilities >.30).

DISCUSSION

Sexual dimorphism was highly negatively correlated with ele-
vational distribution in cardueline finches from throughout
the world. This robust, but previously unrecognized. pattern
is consistent with the a prioni prediction that the intensity of
sexual selection varies with elevation of breeding. Here I ex-
amine the evidence for possible mechanisms causing the sex-
ual dimorphism—elevation relationship.

Uneven sex-specific selection along elevation gradient

Reduced sexual selection and dimorphism mav occur at high
elevations because of constraints placed on males by parental
care; successful breeding is strongly dependent on male pa-
rental investment at high elevations and ladrudes because
colder climatc conditions and patchy resource distribution
impede the ability of incubating and brooding females to ob-
tain sufficient food on their own (Badyaev. 1993, 1994; Frey,
1989a,b; Lyon et al,, 1987). For example, in the white-winged
grosbeak (Mycerobas carnipes), even a short absence of the
female from the nest during egg-laying causes lethal cooling
of eggs. especially early in the season (Badyaev. 1994; Kovshar,
1979). In a color-marked population of gold-fronted serins
(Serinus pusillus), two females abandoned their clutches after
their mates disappeared, presumably because these females
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were unable to maintain incubation while foraging at a re-
mote feeding habitat (Badyaev, 1993). Furthermore, the pe-
riod of female dependency on male care is longer in highland
than in lowland cardueline taxa because females at higher
elevations often begin incubation with the first egg and have
longer incubation periods (Badyaev, 1997a; Frey 1989a; Kov-
shar, 1979). These patterns are supported more generally by
the analyses that show male parental care increases with ele-
vation (Figure 3).

The disjunct disaibution of foraging and nesting habitats

at high elevations facilitates foraging in flocks by male finches
and potentially contributes to synchronization of breeding at-
tempts by different pairs (Frey, 1989a; Newton, 1973). Greater
breeding synchrony is thought to reduce opportunites for ex-
trapair matings (e.g., Westmeat et al., 1990). Moreover, inten-
sive mate guarding by males and frequent intrapair copula-
tions are typical for highland finches (Badyaev, 1993, 1994;
French, 1954; Johnson, 1972; Kovshar, 1979; Shreeve, 1977)
and may contribute to high paternity assurance, reinforcing
high male parental investient. Incubation beginning with the
first egg and infrequent foraging by females during incuba-
tion further decrease the potential for extrapair copulatons
by restricting female movements to the immediate nest vicin-
ity.
Climatic conditions and resource distribution allow females
of lowland species to forage during incubation, and the pe-
riods when females need to brood nestlings are shorter and
less frequent (Badyaev, 1993, 1994; Boehme, 1954; Bjorklund,
1990a; Cramp and Perrins, 1994; Hill, 1993b; Mal’chevski and
Pukinski, 1983; Stjernberg, 1979). Females are often able to
raise a brood after the disappearance of their mate, while lon-
ger breeding seasons provide additional breeding opportuni-
ties and may decrease synchronization in breeding among
pairs (e.g., Hill et al., 1994). Consequently, parental care plac-
es fewer constraints on males in many lowland species (Figure
3). Thus, the potential for sexual selection could be greater
in lowlands because reduced demands for male parental in-
vestment can increase male opportunities to solicit females
and provide greater mating opportunities for females. Alter-
natively, sexes might be subject to more similar selection pres-
sure at higher elevadons as a result of more similar contri-
butions to parental care (Badyaev, 1997D).

Plumage brightness of males and the magnitude of sexual
dichromatism has been shown to covary with exurapair pater-
nity in a number of bird species (Mgller and Birkhead, 1994).
In cardueline finches, variation in sexual dichromatism is
largely driven by increased brightness of male plumage at low-
er elevations. It is possible that the potential for extrapair cop-
ulations is greater for both sexes at lower elevations (see
above). Indeed, in lowland cardueline finches, males often
have been observed to intrude into neighboring territories,
and both males and females are known to solicit extrapair
copulatons (e.g., Bjérklund, 1990a; Cramp and Perrins, 1994;
Hill, 1993b; Middleton, 1993; Nakamura, 1982; Shreeve, 1977;
Stjernberg, 1979). Thus, aldtudinal changes in sexual dimor-
phism and male brightness in finches could relate to the pur-
suit of mixed reproductive strategies, and extrapair paternity
could play an important role in the expression of sexually
dimorphic traits.

The expression of a male’s secondary sexual characters may
vary with his resistance to parasites (Hamilton and Zuk, 1982;
Maeller, 1990). If altitudinal variation in sexual dimorphism in
finches was due to parasitism levels, then parasite loads should
be lower in highlands than in lowlands. Indeed, Bennett et
al. (1992) suggested that the absence of suitable parasite vec-
tors in high arctic regions, which are similar to high eleva-
tions, leads to a scarcity of blood parasites in bird species there
(Greiner et al., 1975; Peirce, 1981; Seudn, 1994). However,
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variation in parasite infestation generally did not correlate
with either elevadon or plumage brightness in finches and
thus cannot account for the negative correlation between di-
chromatism and elevation, although more analyses are need-
ed on other types of parasites and a wider variety of finch
species.

The expression of secondary sexual traits could also be re-
lated to mating discrimination between closely related species
(Andersson, 1994); sexual dimorphism within a taxonomic
clade or within a community is expected to increase with spe-
cies diversity (Barraclough et al., 1995). To account for the
observed correlaton between dimorphism and elevation, this
hypothesis has to assume more finch species in the lowlands.
Extent of hybridization did not covary with elevation in car-
duelines; however, finches with a higher degree of hybridiza-
tion show brighter and more sexually dimorphic plumages. In
house finches (Carpodacus mexicanus), females preferentially
paired with brighter males, despite their mate plumage pat-
tern being dissimilar to males in their own subspecies (Hill,
1993a). This finding and my results suggest that mating dis-
criminadon cannot account for the relationship between di-
chromatism and elevation, although it may contribute to
plumage brightness variation in the subfamily.

Variation in cost of trait maintenance along elevation
gradient

Female brightness and rump dichromatism covary with nest
placement (Table 3), suggestng the importance of nest pre-
dation for the evolution of female plumage (Martin and Bad-
yaev, 1996). However, nest placement did not covary with male
brightness and did not by itself explain the altitudinal change
in overall sexual dichromatism. Increased predation on adults
could limit expression of secondary sexual traits and select for
more cryptic males, especially in environments where males
provide substandal parental care (e.g., Badyaev, 1997b; John-
son, 1991; Promislow et al., 1992). Alternatively, if bright col-
oration serves as a signal of unprofitable prey, high predation
should select for bright plumage in males (Baker and Parker,
1979; Goumark, 1995). In carduelines, male plumage is bright-
er in lower elevadon species. Brighter plumage in males of
low elevadon may not lead to increased nest detection by
predators because in these species males contribute less to
parental care as compared to high elevation species. Nest pre-
dation rate weakly negatively correlated with altitude in most
carduelines and positively correlated with male but not with
female plumage brightness (this study; Badyaev, 1997b). More
data on altitudinal variation in predation on adults are need-
ed to investigate the interaction among predation pressure,
plumage brightness, and parental care. )

In many carduelines, carotenoid-based plumage coloration
varies with availability of carotenoids in the diet during post-
breeding molt (e.g., Brush and Power, 1976; French, 1954;
Hill, 1992; Hill and Montgomerie, 1994). Thus, observed vari-
ation in plumage coloration could in part be due to the dif-
ferendal availability or quality of carotenoid-rich foods at dif-
ferent elevatons. For example, geographical variadon in inten-
sity of red coloraton among subspecies of the house finch is
influenced by local access to carotenoids (Hill, 1993a). Thus,
access to carotenoids and ability to produce carotenoid-based
coloration could affect interspecific variation in sexual dichro-
matism in the subfamily. Energy and dme expenditures of con-
siderable male parental investment at high elevatons and short
nesdng season may decrease the time and energy available for
molt and thus for development of sexual traits (Hill and Mont
gomerie, 1994; Moller et al., 1995). This prediction is corrobo-
rated by observadons of overlap between breeding and molting.
which is typical of many high elevadon birds (Kovshar, 1979).
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Intensity of pigmentation and coloration could influence
the energy exchange between the organism and its environ-
ment. Therefore, observed differences in plumage brightness
along an elevation gradient could be due to variation in phys-
iological constraints imposed by high elevations. However, in
wood warblers, plumage coloraton and brightness were
shown to be less important for thermoregulaton than behav-
ior and ptiloerection (Burtt, 1986). Thus, differences in access
to carotenoids during molt would appear to be a more plau-
sible explanation for altdtudinal variations in dichromatism
than would physiological constraints on coloration imposed
by climate.

In sum, interspecific variadon in sexual dichromatism in
cardueline finches is most closely associated with changes in
elevation. The variation in plumage brightness dimorphism is
largely due to increased brightmess of male plumage at lower
elevatdons. The altitudinal variation in sexual dichromatism
may reflect increased potential for sexual selection at lower
elevations (e.g., greater extrapair fertilization opportunities or
longer period of mate selection). Alternatively, higher paren-
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tal investment by males at higher elevations may (1) decrease
time and energy available for molt, affecting development and
thus extent of secondary sexual traits and (2) place an upper
limit on plumage brightness because bright males might at-
tract predators to the nest. In addition, altitudinal variation
in diet could contribute to the relatdonship between elevation
and dichromatsm. Further reviews and experimental tests of
potentdal mechanisms are needed to better address the eco-
logical and phylogenetic factors causing the elevational vari-
ation in sexual dichromatism.

I am very grateful to Jim Briskie, Shannon Garner, Cameron Ghal-
ambor, Geoff Hill, Rebecca E. Irwin, Wendy Parson, Paul Martn, Tho-
mas E. Martin, Mary F. Willson, and Jay Withgott for detailed review
of earlier versions of this article and many helpful suggestions. This
paper was improved by comments from Craig Benkman, Lindy Gar-
ner, Don Jenni, Bruce Lyon, Jeff Marks, Dolph Schluter, Larry L.
Wolf, and many anonymous reviewers. I thank Toni Rapone and Bill
Davison for scoring plumage dimorphism.

Data on rump (RD), head (HD), and breast (BD) dichromatism; plumage brightness, and mean morphological measurements (mm) of

carduelines (references are given in Appendix B)

Genus Dichromatism Brightness Males Females
species RD HD BD M F Wing Tail Tarsus  Bill* Wing Tail Tarsus  Bill
Serinus
pusillus 0.0 0.0 0.0 3.0 3.0 75.9 55.7 14.3 10.5 734 53.2 14.2 10.5
serinus 0.0 1.0 1.0 3.5 3.0 72.7 50.6 13.6 10.4 69.4 48.1 13.4 10.6
syriacus 0.0 0.0 0.5 2.5 2.5 77.8 55.2 14.8 10.6 74.6 534 14.4 10.7
thibetanus 0.0 1.0 0.0 2.5 2.5 70.0 41.5 14.5 12.0 67.0 43.5 14.5 13.0
canaria 1.0 1.0 1.0 2.5 2.0 72.7 58.8 17.2 10.9 70.2 56.9 17.2 10.8
canicollis 0.0 1.0 1.0 2.5 2.0 78.5 56.0 15.0 9.3 75.5 53.0 15.0 9.3
dtrinella 0.0 0.5 0.5 3.0 3.0 76.6 53.8 14.6 11.7 74.6 523 14.5 11.6
mozambicus 0.0 1.5 0.0 3.5 3.0 68.0 44.0 13.0 9.0 — — — —
dorsostriatus 0.0 0.0 1.0 3.0 3.0 83.0 61.0 18.0 14.0 8i.5 —_ 18.0 14.0
scotops 0.0 0.5 0.0 2.3 2.5 66.0 51.0 15.0 11.0 66.0 51.0 15.0 11.0
Aaviventris 0.5 1.5 15 4.0 2.0 72.0 52.0 18.0 11.0 71.0 — - —
sulphuratus 0.0 1.0 0.0 3.0 25 83.0 61.0 18.0 14.0 81.5 61.0 18.0 14.0
donaldsoni 0.0 1.5 1.5 3.5 2.0 81.0 — — — 81.0 — — —
nigriceps 0.0 2.0 1.0 3.0 3.0 77.0 — — — 77.0 — — —
citrinelloides 0.0 1.5 1.0 3.0 2.5 67.0 49.0 14.8 11.3 66.0 49.0 14.8 11.3
capistratus 0.0 1.5 1.0 3.0 3.0 62.0 405 — — 62.0 40.5 — —
koliensis 0.0 0.0 0.0 2.5 2.5 64.0 — — — 64.0 — —_ —
leucopygius 0.0 0.0 0.0 1.5 15 66.0 41.0 13.0 7.5 66.0 41.0 13.0 7.5
atrogularis 0.0 0.0 0.0 1.5 1.5 68.5 44.0 12.0 85 66.0 44.0 12.0 8.3
menachensis 0.0 0.0 0.0 1.0 1.0 72.5 — — — 72.5 — — —
totta 0.0 0.5 0.5 2.5 2.0 70.0 51.0 1435 9.8 70.0 51.0 145 9.8
symonsi 0.0 1.0 1.0 2.0 1.5 75.5 56.5 16.5 10.8 75.5 56.5 16.5 10.8
albogularis 0.0 0.0 0.0 0.5 0.5 71.5 37.0 21.0 13.5 77.5 57.0 21.0 13.5
gulanis 0.0 0.0 0.0 1.0 1.0 82.5 63.0 155 12.8 79.0 — — —
mennelli 0.0 0.0 0.0 2.0 2.0 82.5 52.0 135 11.3 825 52.0 135 11.3
tristriatus 0.0 0.0 0.0 1.0 1.0 67.0 54.0 16.5 10.0 67.5 — — —
leucopterus 0.0 00 .00 1.0 1.0 73.0 57.5 18.0 12.5 73.0 575 18.0 12,5
striolatus 0.0 0.0 0.0 2.0 2.0 69.5 62.0 20.0 12.8 69.5 60.8 20.0 12.8
rothschildi 0.0 0.0 0.0 1.0 1.0 69.0 - — — 63.0 — — -
dtrinipectus 0.0 0.0 0.0 2.0 2.0 66.5 39.2 13.5 12.0 — — —
ankoberensis 0.0 0.0 0.0 1.0 1.0 74.5 52.0 16.0 13.0 745 52.0 16.0 13.0
burtoni 0.0 0.0 0.0 1.0 1.0 91.0 68.0 19.0 16.3 — — — —
Savigula 0.0 0.0 0.0 2.0 2.0 67.0 50.0 — — — — —_ —
xantholaema 0.0 0.0 0.0 2.0 2.0 66.8 47.0 15.0 9.5 — — — —
alario 0.0 2.0 2.0 35 2.0 66.5 45.5 14.0 85 65.0 433 14.0 8.5
rufobrunneus 0.0 0.0 0.0 1.0 1.0 79.5 45.0 185 12,5 79.5 45.0 18.5 12,5
estherae 0.0 1.0 0.5 2.5 2.0 68.0 45.5 135 9.0 67.5 425 12.0 9.0
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Genus Dichromatism Brightness Males Females
e
species. . RD HD BD M F Wing Tail Tarsus Bill* Wing Tail Tarsus  Bill
Carduelis
cannabina 0.0 1.0 15 2.5 2.0 79.6 50.6 15.6 12.9 77.6 49.9 15.3 12.6
spinus 0.5 1.5 1.0 3.0 2.5 73.3 46.1 13.7 13.2 714 43.0 13.8 13.1
chloris 0.0 0.0 0.0 2.5 2.5 87.5 55.7 17.3 16.6 85.2 53.5 17.4 16.6
sinica 0.0 0.5 0.0 2.5 2.5 80.0 57.5 16.0 11.5 80.7 37.5 16.0 115
spinoides 0.0 0.0 0.5 3.0 2.5 79.5 47.0 15.0 15.0 76.0 48.0 15.0 15.0
monguilloti 0.0 0.0 1.0 2.5 2.0 70.5 — 11.0 10.5 70.5 — 11.0 10.5
ambigua 0.0 0.0 0.0 2.0 2.0 81.0 — 11.0 11.0 — — — —
carduelis 0.0 0.0 0.0 45 4.5 80.4 48.4 14.7 16.2 77.6 47.1 14.4 15.4
tristis 0.5 2.0 0.5 4.0 2.5 71.1 48.1 14.4 10.3 68.2 46.3 14.4 10.3
psaltria 0.0 2.0 1.0 3.5 2.5 63.0 43.0 115 9.8 62.0 43.0 11.5 9.8
pinus 0.0 0.0 0.0 1.5 1.5 73.5 46.3 14.3 10.3 71.0 16.3 143 10.3
cucullata 0.5 2.0 2.0 6.0 35 — — — — — —_ — —
siemiradzkii 0.5 2.0 1.0 4.0 25 — — —_ —_ — — — —
atriceps 0.0 0.0 0.5 2.5 2.5 71.5 — — — — S — —
spinescens 0.0 2.0 1.0 3.0 2.0 64.0 — — 11.0 64.0 — — 11.0
yarrellii 0.0 2.0 1.0 4.0 25 68.0 — 9.0 9.0 68.0 — 9.0 9.0
crassirostris 0.0 1.0 1.0 3.5 2.5 78.0 50.0 — — 79.0 48.5 — —_
magellanica 0.5 2.0 1.0 35 2.5 72.0 — 9.0 9.0 70.0 — — 9.0
dominicensis 0.5 2.0 1.5 3.0 2.0 65.2 41.0 15.0 9.0 63.3 41.0 i3.0 9.0
olivacea 0.0 2.0 1.0 35 25 — — — — — — — —
notata 0.0 0.0 0.5 35 35 64.5 — —_ —_— 63.0 — — —
xathogastra 2.0 2.0 1.5 2.5 2.5 32.8 39.5 135 10.0 63.5 37.0 13.5 10.0
atrata 0.0 0.0 0.0 2.0 2.0 78.5 49.7 — 9.2 T4 49.0 —_ 9.0
uropygialis 0.0 0.0 0.5 3.0 3.0 82.0 49.0 12.0 9.5 82.0 49.0 12.0 9.5
barbata 0.0 1.5 0.5 3.0 2.5 73.0 48.0 13.0 10.5 73.0 15.0 13.0 10.3
lauwrence 0.0 2.5 1.0 3.0 2.5 67.5 - o — 64.5 — — —
flammea 0.5 1.5 1.5 3.0 2.0 74.1 55.9 14.5 12.9 72.2 54.8 14.4 12.4
hornemanni 0.0 0.0 0.5 25 2.5 77.9 60.6 15.0 11.6 75.2 59.7 14.4 11.4
Navirostris 1.5 0.0 0.0 1.5 1.5 77.7 58.5 15.8 11.5 75.6 56.9 15.8 11.5
yemenensis 0.0 0.0 0.0 2.5 2.5 79.0 — 14.4 11.4 70.5 — 14.4 11.4
johannis 0.0 0.5 0.0 3.0 3.0 75.0 — 13.0 9.0 75.0 — 13.0 9.0
Leucosticte
nemoricola 0.0 0.0 0.0 2.0 1.5 99.5 68.5 20.5 13.5 99.0 66.5 20.5 13.5
branti 0.0 0.0 0.0 2.0 2.0 117.5 71.7 21.0 13.8 111.0 72.0 21.0 143
a. atrata 0.0 1.0 1.0 2.0 1.0 112.0 67.5 20.0 11.5 105.5 67.5 20.0 11.5
a. arctoa 0.0 0.0 0.0 1.0 1.0 116.4 76.0 —_ 11.7 112.4 72.6 — 11.6
Callacanthis
burtoni 1.0 2.0 2.0 3.0 2.0 100.0 64.0 19.0 18.0 98.5 61.0 19.0 18.0
Rhodopechys
sanquinea 0.5 0.5 0.0 3.0 2.0 107.1 57.7 20.5 16.4 102.6 533.5 19.7 16.3
githaginea 1.0 1.5 15 25 1.0 87 50.9 18.1 12.3 85.6 48.9 174 12.6
mongolica 1.0 1.0 15 2.0 1.0 1.1 54.1 174 12.5 87.9 51.8 17.2 12.3
obsoleta 0.0 0.5 0.0 2.0 2.0 8.1 59.9 17.3 14.7 85.8 58.1 17.1 14.6
Uragus
sibiricus 1.0 2.0 2.0 35 1.5 74.5 80.0 15.8 8.5 72.0 75.5 158 8.5
Urocynchramus
pylowi 1.0 2.0 2.0 25 1.5 71.2 — — 10.0 71.0 — — 10.0
Carpodacus
rubescens 2.0 2.0 2.0 4.0 1.0 82.5 52.0 18.0 14.0 78.3 50.3 18.0 14.0
nipalensis 1.0 2.0 2.0 3.0 1.5 88.3 39.3 21.5 14.5 82.0 57.0 215 145
e. erythrinus 1.5 2.0 2.0 35 1.5 841.8 56.3 19.0 14.2 82.7 55.4 19.1 14.3
e. ferganensis 1.5 2.0 2.0 35 1.5 86.7 58.2 19.2 14.7 §2.2 — 19.3 14.4
purpureus 15 2.0 2.0 35 2.0 80.5 36.3 17.8 11.0 79.0 56.5 17.8 11.0
cassinii 0.5 2.0 2.0 3.0 20 93.0 63.7 18.3 12,3 89.2 63.7 18.3 12,5
mexicanus 2.0 2.0 2.0 25 1.5 80.2 59.6 17.2 10.0 77.8 57.7 17.2 10.0
eos 1.5 2.0 2.0 3.0 1.5 725 - — — 72.5 — — —
rhodochrous 1.0 2.0 2.0 3.0 1.5 73.0 60.0 19.5 15.0 69.0 60.0 19.5 15.0
vinaceus 2.0 2.0 2.0 35 1.5 70.0 38.0 20.0 14.0 70.0 58.0 20.0 14.0
edwardsii 2.0 2.0 2.0 25 1.5 §2.0 64.0 235 15.0 79.5 62.5 23.5 15.0
synoicus 0.5 2.0 1.5 2.0 1.0 92.4 62.1 19.9 13.7 87.4 59.2 10.7 13.6
roseus 1.0 20 2.0 3.5 2.0 90.3 6.3 205 15.2 36.6 60.8 20.6 14.6
trifasciatus 1.5 2.0 2.0 +.0 2.0 85.0 725 215 15.5 85.0 725 215 15.5
rhodopeplus 2.0 2.0 2.0 35 1.5 86.0 70.5 23.0 14.5 86.0 70.5 23.0 145
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Ge Dichromatism Brightness Males Females
nus
species .RD HD BD M F Wing Tail Tarsus  Bill* Wing Tail Tarsus  Bill
thura 1.0 2.0 1.5 2.5 1.0 84.0 75.0 25.0 14.0 81.5 65.0 25.0 14.0
rhodochlamys 2.0 2.0 2.0 3.5 1.0 88.5 71.5 21.0 14.8 90.0 67.5 21.0 14.8
rubicillotdes 1.0 2.0 2.0 3.5 1.5 105.0 88.0 24.5 18.0 102.0 88.0 24.5 18.0
rubicilla 2.0 2.0 2.0 4.5 1.5 117.5 88.1 23.7 20.0 113.7 84.2 24.0 19.9
puniceus 1.0 2.0 2.0 2.0 1.0 113.0 78.5 23.5 18.0 111.0 76.0 23.5 18.0
roborowskii 1.0 . 20 2.0 35 1.5 122.0 90.0 21.0 — 122.0 90.0 21.0 —
pulcherrimus 15 20 1.5 2.5 1.0 715 63.0 20.0 13.0 76.0 63.0 20.0 13.0
Pinicola
enucleator 2.0 2.0 2.0 3.5 2.5 109.4 84.8 22.2 21.0 109.2 841.9 22.5 2
subhimachala 2.0 20 2.0 35 2.0 101.0 78.5 23.0 15.5 94.0 76.5 23.0 5.5
Haematospiza :
sipahi 2.0 2.0 2.0 6.0 2.0 103.0 64.5 20.5 18.0 99.0 60.5 20.5 18.0
Loxia
Dytyopsittacus 1.0 2.0 2.0 3.0 1.5 104.4 64.7 19.2 24.2 101.5 60.7 19.6 23.7
curvirostra 2.0 2.0 2.0 4.0 1.5 97.4 58.3 18.3 22,9 95.3 55.9 18.3 225
scotica 2.0 2.0 2.0 4.0 2.0 99.8 58.6 18.3 22.8 97.4 57.0 18.2 22.3
leucoptera 2.0 2.0 2.0 3.5 2.0 92.1 60.9 16.1 20.3 88.4 58.9 16.1 19.6
Pyrrhula
nipalensis ' 0.0 0.0 0.0 3.0 3.0 86.5 75.0 17.0 12,5 83.3 70.0 17.0 125
leucogenys 0.0 0.0 0.0 2.5 2.5 79.0 66.0 19.0 12.0 79.0 66.0 19.0 12.0
aurantiaca 0.0 2.0 1.0 3.0 2.0 81.5 57.5 18.0 13.0 81.5 57.3 18.0 13.0
erythrocephala 0.0 2.0 2.0 35 2.0 76.5 65.0 18.5 11.5 78.0 63.0 18.3 11.5
erythaca 0.0 0.0 2.0 3.0 2.0 83.0 70.0 17.0 12.0 82.0 70.0 17.0 12.0
pyrrhula 0.0 20 2.0 35 2.0 93.8 70.5 18.0 15.5 91.8 69.6 17.7 15.2
Coccothraustes
coccothraustes 0.5 0.5 0.0 35 3.5 103.6 57.2 21.4 25.3 101.4 55.5 20.9 244
vespertinus 1.5 2.0 1.0 4.0 2.5 115.0 64.4 21.2 23.2 112.2 62.3 22.92 23.2
abetlle 0.5 2.0 1.0 4.0 2.0 103.0 —_ — 103.0 —
Eophona
migratoria 0.0 2.0 0.0 2.5 25 102.5 78.5 — 22.5 96.0 78.5 — 225
personata 0.0 0.0 0.0 3.0 3.0 115.0 89.0 — 25.0 106.5 89.0 — 23.0
Mycerobasl
icterioides 2.0 2.0 2.0 5.5 2.0 131.0 92.5 24.0 26.3 1275 92.5 24.0 26.3
affinis 1.0 1.5 1.0 5.5 3.0 129.5 925 27.5 27.0 126.5 87.0 275 27.0
melanozanthos 1.0 2.0 1.5 3.0 2.5 128.5 77.0 23.5 28.0 127.0 75.0 23.0 29.5
carnipes 0.0 15 2.0 2.0 1.0 116.5 94.0 275 30.0 67.0 94.0 27.5 28.0
Linurgus
olivaceus 0.0 2.0 1.0 4.0 2.0 76.5 50.5 20.0 13.5 73.0 50.5 20.0 135
Rhynchostruthus R
socotranus 0.0 0.0 0.0 3.0 3.0 89.0 — 16.0 9.9 89.0 — 16.0 9.9
Pyrrhoplectes
epauletta 2.0 2.0 2.0 2.5 2.0 77.5 58.0 19.5 13.5 73.5 54.5 19.5 13.5
Neospiza :
concolor 0.0 0.0 0.0 2.0 2.0 104.0 — 20.0 21.0 104.0 — 20.0 21.0

Darta were not available for missing values in the table.

2 To skull.
APPENDIX B
Data on continent and altitude of species distribution, nest dispersion, nest placement, and migratory classification of cardueline finches
Elevaton¢ .\"CSI Nest Migra-
disper- place-  tory
Species Continent* Habitat® Min Max sion? ment status’  Referencess
Serinus pusillus® PALEAR C 2000 3000 1 1 0 1.2,3.28
Serinus pusillus' PALEAR SC 2000 4600 2 1 1 4
Serinus serinus PALEAR SC 0 1200 2 2 2 5,6,28
Serinus syriacus PALEAR SC 900 1800 2 1 2 1.17,28
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Elevation® Nest Nest Migra-
disper- place-  tory

Species Continent? Habitat® Min Max siond ment®  status’  References?
Serinus thibetanus PALEAR C 2800 4000 — — 1 1
Serinus canaria PALEAR C 0 1700 2 3 0 6, 7,28
Serinus canicollis AFRICA SC 2000 4300 3 2 0 1,8,9,10
Serinus citrinella PALEAR C 1000 3000 3 2 1 11, 28
Serinus mozambicus AFRICA SC 0 1800 — 3 2 1,9,12,13
Serinus dorsostriatus AFRICA SC 1000 2000 e 3 0 1,9, 14,17
Serinus scotops AFRICA C 0 1800 — 3 0 1,9,15,17
Serinus flaviventris AFRICA O 0 —_ — 3 0 1,9,15
Serinus sulphuratus AFRICA (e} 1000 2400 — 3 — 1,9,15
Serinus donaldsoni AFRICA O 0 1300 —_ —_ 0 1,9
Serinus nigriceps AFRICA SC 1800 4100 — 1 0 1,9, 14
Serinus citrinelloi AFRICA (o] 1000 3000 3 1 0 1,15, 17
Serinus capistratus AFRICA C 0 1500 — 3 — 1,15
Serinus koliensis AFRICA SC 900 1600 — — 0 1,6
Serinus leucopygius AFRICA O 0 1000 — 3 0 1,9.15
Serinus atrogularis AFRICA (o} 900 — 3 3 .2 1,12,13
Serinus menachensis ARABIA (o} 2000 3666 — 4 — 1.9.16
Serinus totta AFRICA o — — — 4 1 1.15,17
Serinus symonsi AFRICA (o] 2400 — — 1 1 1,15
Serinus albogularis AFRICA O 0 — — 1 2 1,9, 15
Serinus gularis AFRICA C 1200 2000 2 3 2 8.9,14.15,18
Serinus mennelli AFRICA SC 600 1950 1 2 2 6,8,9.17, 19
Serinus tristriatus AFRICA SC 1060 3330 —_ 3 — 1,9, 14
Serinus leucopterus AFRICA SC — — - 1 0 1,6,15
Serinus striolatus AFRICA SC 1300 4300 — 3 0 1,9.15, 17
Serinus rothschildi ARABIA SC 1000 2800 — — 0 1,9.16
Serinus atrinipectus AFRICA O 0 730 — 1 2 9, 12,20
Serinus ankoberensis AFRICA O 2980 3200 1 4 — 9. 21,22
Serinus burtoni AFRICA SC 1500 3000 — — — 1
Serinus flavigula AFRICA O 1400 1500 — — 0 1,22
Serinus xantholaema AFRICA (o] 0 — — — 2 1.9
Serinus alario AFRICA (o] —_ — 3 1 2 9,13, 15
Serinus rufobrunneus AFRICA SC 0 900 — — —_ 1,9
Serinus estherae PALFAR O 1400 3400 — — — 1,23
Carduelis cannabina PALEAR SC 0 2200 3 1 4 5,7,24,25,26
Carduelis spinus PALEAR C 0 1800 2 2 2 7.924,27,28
Carduelis chloris PALEAR SC 0 1400 2 3 4 5,7, 24,28
Carduelis sinica PALEAR SC 0 2400 1 2 4 29, 30, 31
Carduelis spinoides PALEAR C 1600 4400 3 2 1 32,33
Carduelis monguilloti PALEAR C 1000 —_ — — — 1
Carduclis ambigua PALEAR SC 1800 4000 — 1 2 32,34
Carduelis carduelis PALEAR SC 0 4250 2 2 2,7,24, 35,36
Carduelis tristis NAMERI SC — —_ — 2 2 37.38,39
Carduelis psaltria NAMERI o 0 3100 3 3 2 37,40
Carduelis pinus NAMERI C — —_ 3 2 2 37
Carduelis cucullata SAMERI SC 280 1300 —_ 2 2 41, 42
Carduelis siemiradzkii SAMERI SC 0 800 —_ —_ — 1
Carduelis atriceps MAMERI SC 2350 3050 — —_ — 1
Carduelis spinescens SAMERI SC 1800 4100 —_ — 2 1,41
Carduelis yarrellii SAMERI SC 0 500 — — — 1,41
Carduelis crassirostris SAMERI O 3000 4800 —_ —_ 2 1
Carduelis magellanica SAMERI (o] 0 5000 - — 2 1
Carduelis dominicensis MAMERI SC 1500 — 3 —_ 1 1
Carduelis olivacea SAMERI C 1200 3000 — —_ — 1
Carduelis notata MAMERI C 1000 2750 —_ - 2 1
Carduelis xanthogastra SAMERI C 1400 3700 — 2 0 1,43
Carduelis atrata SAMERI (0] 1800 4800 — —_ 0 1, 44
Carduelis uropygialis SAMERI SC 2500 4000 — —_ 2 1
Carduelis barbata SAMERI SC 0 1500 _ — 2 1
Carduelis lauwrencer NAMERI (0] 0 —_ 3 2 2 37. 45
Carduelis flammea HOLARC SC 0 — 2 5 1 7,46, 47, 48
Carduelis hornemanni HOLARC (0] 0 — 3 5 4 7.28, 49
Carduelis flavirostris PALEAR (o) 0 1000 1 0 4 50
Carduelis f. montanella PALEAR (o] 3000 4850 3 5 4 7,98
Carduelis yemenensis ARABIA (0] 1800 3660 3 — 1 1,51
Carduelis johannis AFRICA SC 1200 2400 — — — 1,32
Leucosticte nemoricola PALEAR O 2300 5300 3 4 2 2,32
Leucosticte branti PALEAR (0} 3950 6000 3 4 0 7.32
Leucosticte a. atrata HOLARC (o] 0 100 1 4 0 53,54, 55
Leucosticte a. arctoa HOLARC O 3000 5000 3 4 1 7.56
Callacanthis burtoni PALEAR SC 2270 3330 — 2 1 1,35
Rhodopechys sanquinea PALEAR (0] 2000 3200 2 0 1 1,32, 66
Rhodopechys githaginea PALEAR (0] 350 2000 1 4 4 7,32,37,58
Rhodopechys mongolica PALEAR o 400 1750 3 4 2 57,58
Rhodopechys obsoleta PALEAR o 0 1500 3 2 2 7,59, 60
Uragus sibiricus PALEAR SC — 3400 — 1 2 1,7
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APPENDIX B, continued
Nest Nest Migra-

Elevation® !
disper- place-  tory

Species | . Continent® Habitat®  Min Max siond ments  status’  References®
Urocynchramus pylzowi PALEAR 0 3050 5000 — — 0 1
Carpodacus nipalensis PALEAR SC 3030 4800 — o 1 1
Carpodacus mexicanus NAMERI SC 0 1500 1 2 0 65
Carpodacus rhodopeplus PALEAR (0] 3000 5000 — — 1 1
Carpodacus purpureus NAMERI C 0 - 1 2 2 1.62
Carpodacus cassinii NAMERI C 1500 3000 1 2 2 1, 63, 64
Carpodacus rhodochlamys PALEAR SC 2720 4900 1 3 1 2,4,7, 32
Carpodacus rubicilloides PALEAR o 3700 5800 - — 1 32
Carpodacus eos PALEAR o 3950 5300 — - 1 32
Carpodacus e. erythrinus PALEAR SC 0 1999 1 1 3 7,24,28.61
Carpodacus e. ferghanensis PALEAR (0] 2000 4550 1 1 3 2,7,28,76
Carpodacus rubicilla PALEAR o 3000 5100 2 4 1 7,28, 32
Carpodacus roborowskii PALEAR o 4500 5400 — - 0 1
Carpodacus rhodochrous PALEAR sC 2250 4540 — 2 1 32
Carpodacus synoicus PALEAR (0] 2000 3350 2 4 0 28, 32
Carpodacus roseus PALEAR SC 0 3030 — 2 3 28, 32
Carpodacus vinaceus PALEAR SC 1970 3500 — — 0 1
Carpodacus trifasciatus PALEAR SC 2130 3050 — — 1 1,32
Carpodacus rubescens PALEAR C 3000 5000 — — 1 32
Carpodacus thura PALEAR (0] 3200 5000 — ) 0 32
Carpodacus pulcherrimus PALEAR (0] 3600 5000 — 1 0 32
Carpodacus puniceus PALEAR o 3000 5700 — 4 0 32
Carpodacus edwardsii PALEAR SC 3050 4240 — — 1 1
Pinicola enucleator HOLARC C 1250 2000 2 2 7,28
Pinicola subkimachala PALEAR O 3500 4200 — 1 1
Haematospiza sipahi PALEAR C 1600 3355 — 3 1 1
Loxia curvirostra HOLARC C 0 4500 1 2 2 2.7,24.28
Loxia leucoptera HOLARC C 0 — 3 2 2 7,67, 68, 69
Loxia scotica PALEAR C 0 — 1 2 2 1
Loxia pytyopsittacus PALEAR C 0 — 3 2 4 1
Pyrrhula leucogenys PALEAR C 1250 1750 — — 1 1
Pyrrhula erythrocephala PALEAR C 2700 4200 — 1 32
Pyrrhula erythaca PALEAR C 2500 4500 0 — 1 32
Pyrrhula aurantiaca PALEAR C 3000 4300 — 2 1 32
Pyrrhula pyrrhula PALEAR C 0 2900 0 3 4 5, 70
Pyrrhula nipalensis PALEAR SC 2200 4000 — — 0 32
Eophona migratoria PALEAR C 0 2000 — 3 4 1,7
Eophona personata PALEAR SC 0 — — 2 4 1,7
Mycerobas icteroioides PALEAR sC 1800 3500 — 2 1 1,32
Mycerobas affinis PALEAR sC 2700 4800 — — 1 1,32
Mycerobas melanozanthos PALEAR C 2400 3600 - 2 1 32
Mycerobas carnipes PALEAR SC 2800 4600 2 3 1 2,71
Coccothraustes coccothraustes PALEAR Cc 0 3000 2 2 4 5,7
Coccothraustes vespertinus NAMERI C 2000 — 1 2 2 72,73
Coccothraustes abeillei MAMERI C 1000 3350 — — 0 1
Linurgus olivaceus AFRICA C 1524 3048 1 0 13, 74
Rhynchostruthus socotranus ARABIA SC 1060 3100 — — 0 75
Pyrrhoplectes epauletta PALEAR (¢] 2800 4800 — — 1 32
Neospiza concolor SAOTOM C — - — — — 1

Data were not available for missing values in the table.

2 Continent: PALEAR, Palearctic; NAMERI, MAMERI, SAMERI, North, Middle, and South Americas; HOLARC, Holarctic; SAOTOM., Sio
Tomé; ® Habitat type: C, closed (i.e., montane and lowland forests, parks); SC. semiclosed (i.e.. subalpine and lowland shrubs. ecotones); 0.
open (i.e., alpine and lowland meadows, mountain and lowland steppe, agricultural fields). < Breeding range elevation; ¢ Nest dispersion: 1,
solitary (i.e., dispersed); 2, dispersed/aggregated (mixed); 3, aggregated, and 4, colonial. < Nest placement: 0, ground: 1, shrubs: 2, trees; 3,
shrubs/trees; 4, crevices; 5, ground/shrubs. © Migratory status: 0, resident; 1, altitudinal migrant; 2, local/short distance migrant: 3, migrant;
4, 2+3. s References: 1) Clement et al., 1993; 2) Kovshar, 1979; 3) Badvaev. 1993; 4) Badvaev AV, unpublished data; 3) Newton. 1973; 6) van
den Elzen and Nemeschkal, 1991; 7) Boehme, 1954; 8) Brickel, 1987; 9) van den Elzen. 1985; 10) Wolff and Jacobsen, 1980: 11) Brandl and
Bezzel, 1988; 12) Irwin, 1979; 13) Brickel, 1989; 14) Mackworth-Praed and Grant, 1953; 15) Macworth-Praed and Grant, 1963; 16) Evereu,
1987; 17) van den Elzen, 1983; 18) Irwin, 1977; 19) Vernon, 1979; 20) Clenslow, 1993; 21) Ash, 1979; 22) Ash and Gullick, 1990; 23) Bishop
and King, 1986; 24) Mal'chevski and Pukinski, 1983; 25) Tast, 1970; 26) Ruelle, 1986a; 27) Senar, 1984; 28) Cramp and Perrins. 1994; 29)
Haredo and Nakamura, 1970; 30) Nakamura, 1982; 31) Nakamura, 1991; 32) Boehme. 1975; 33) Ruelle, 1986b; 34) van den Elzen and
Classen, 1992; 35) Desfayes, 1969; 36) Conder. 1948; 37) Bent, 1968; 38) Middleton, 1988; 39) Middleton, 1993; 40) Lindsdale, 1937; 41)
Meyer de Schauensee and Phelps, 1978; 42) Coats and Phelps, 1985; 43) Miller, 1963; 4+4) Navas and Bo, 1991; 45) Coutlee, 1968; 46)
Pullianen, 1979; 47) Trov and Shields, 1979; 48) Seutin et al.. 1991; 49) Herremans, 1990; 50) Marler and Mudinger. 1975; 51) Bowden and
Brooks, 1987; 532) Ash and Miskel, 1981; 53) Johnson. 1983;: 34) French, 1954; 33) Shreeve, 1977; 56) Potapov, 1963; 57) Panov, 1989; 538)
Bartherl et al,, 1992; 59) Ponomareva. 1981; 60) Yosef, 1991; 61) Bjorklund. 1990b: 62) Wootton, 1996; 63) Samson, 1976; 64) Medwaldt and
King. 1985; 63) Hill, 1993a; 66) Gubin, 1979; 67) Benkman, 1989; 68) Benkman, 1992: 69) Pulliainen and Tuomainen, 1978; 70) Bijlsma.
1982: 71) Badvaev, 1994; 72) Fee and Bekoff, 1986; 73) Scott and Bekoff, 1991; 74) Ellis. 1981; 75) Martins, 1987; 76) lovchenko, 1986.

" Mountain forest populaton. | Subalpine populaton. i C. £ pipilans.
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