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Environmental stress and developmental
stability in dentition of the Yellowstone
grizzly bears

Alexander V. Badyaev
Division of Biological Sciences, University of Montana, Missoula, MT 59812-1002, USA

Asymmetry in bilateral traits is often used to assess an individual’s quality and stress resistance, but stress-induced variation in
developmental stability is largely undocumented for free-living populations. Over many years, grizzly bears (Ursus arctos horribilis)
extensively foraged around garbage dumps in Yellowstone National Park. Abrupt closure of these dumps 26 years ago was a
severely stressful event and was followed by excessive mortality and a many-fold increase in grizzly home-range size. I examine
how this stress affected developmental stability by comparing dentition of bears born before and after the dump closure. I
predicted that (1) asymmetry in dentition should be greater in bears born after dump closure compared to before closure, and
asymmetry in sexually selected canines should change more than nonsexually selected premolars following dump closure and
(2) the relationship between tooth asymmetry and tooth size should change in the populations following the stressful events as
compared with populations before stressful events. I found that developmental stability of canines, which are under directional
sexual selection in males, was more responsive to stress compared to that of male premolars or female dentition (both under
stabilizing selection), and, because of the increased cost of canine production, fewer animals were able to achieve both large
size and symmetrical development of these teeth, and thus the slope of the relationship between fluctuating asymmetry and
canine size increased. I conclude that stress appears to act as an honesty-reinforcement mechanism in sexual selection for
symmetrical dentition. Key words: dentition, developmental stability, environmental stress, grizzly bears, sexual selection, Ursus

arctos horribilis. [Behav Ecol 9:339-344 (1998)]

Periods of rapid environmental change can alter individual
energy expenditure during development and thereby in-
crease phenotypic variation in populations (e.g., Parsons,
1993, 1995). Such increased variation may be evident in de-
viations from optimal development in morphological traits
(i.e., ideal concordance between genotype and phenotype),
which is expressed as increased asymmetry (Mather, 1953;
Palmer and Strobeck, 1986; Swaddle and Witter, 1994, Van
Valen, 1962; Zakharov, 1987). Although environmental stress
can be the proximate cause of increased fluctuating asym-
metry (FA), the ability to cope with stress must have a genetic
basis (Thornhill and Sauer, 1992). Several studies found sig-
nificant, although usually low, heritability for FA (Bailit et al.,
1970; Livshits and Kobyliansky, 1989; Mgller and Thornhill,
1997; Potter and Nance, 1976; Reeve, 1960). Because of its
low heritability, asymmetry is commonly used to assess fitness
of an individual (e.g., Bailit et al., 1970; McKenzie and Clarke,
1988; Mitton and Grant, 1984; Mgller and Pomiankowski,
1993; Mgller and Thornhill, 1997; Watson and Thornhill,
1994).

Although close associations between stress and developmen-
tal stability have been documented in numerous laboratory
experiments (e.g., Imasheva et al., 1997; Sciulli et al.,, 1979;
Siegel and Doyle, 1975a,b), studies of free-living populations
documenting effects of distinct stressful events are rare (e.g.,
Mgiller, 1993). For example, temporal increases in skeletal
fluctuating asymmetry in free-living populations as a pre-
sumed result of pollution have been documented for a num-
ber of animal taxa (e.g., Jagoe and Haines, 1985; Pankakoski
et al., 1992; Schandorff, 1997; Valentine and Soulé, 1973; Zak-
harov and Yablokov, 1989). However, several classic studies
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have relied mostly on examination of FA in museum speci-
mens from different populations (Manning and Chamberlain,
1994; Wayne et al., 1986) and may partially confound inter-
population differences in FA by intrapopulation increases in
FA following of stress (e.g., Picton et al., 1992; Swaddle et al.,
1994, 1995).

A single stressful event in the Yellowstone National Park
population of grizzly bears (Ursus arctos horribilis) provided a
unique opportunity to examine stress effects on developmen-
tal stability of morphological traits. For more than 13 years,
Yellowstone grizzlies foraged extensively around open garbage
dumps maintained at the ecocenters of the park (Craighead
et al,, 1995). Before 1970 (hereafter called the “preclosure
period”), approximately 125 tons of edible trash were depos-
ited daily at these dumps, and all grizzlies of the Yellowstone
population (n = 300) foraged there during summer (Craig-
head et al., 1995). Dumps were abruptly closed and fenced
off in 1969-70, causing excessive mortality and more than a
fivefold increase in annual home ranges of grizzlies (Blan-
chard, 1987; Craighead et al., 1995). Summarizing data on
bear movements and mortality after the summer of 1970-1980
(hereafter called the “postclosure period”), Craighead et al.,
(1995: 377) concluded that *“‘the grizzly bear population was
under immense stress following closure of the dumps.”

Variation in the developmental stability of tooth morphol-
ogy is particularly suitable for studying consequences of severe
stress (e.g., Bailit et al.,, 1970; DeBennardo and Bailit, 1978;
Harris and Nweeia, 1980; Garn et al., 1965; Siegel and Smook-
ler, 1973). Development of bunodont teeth occurs over a
short period of time and is strongly influenced by diet, pre-
natal exposure to stressors, disease, and consanguinity (Bailit
et al., 1970; Corruccini and Potter, 1981; DeBennardo and
Bailit 1978, Garn et al., 1965; Manville, 1992; Niswander and
Chung 1965; Suarez, 1974). These teeth do not change after
eruption into the oral cavity (e.g., Garn et al., 1965), and their
natural wear is limited to the extremely hard enamel surface,
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with maximum wear commonly smaller than measurement er-
ror (see below; Greene, 1984). Upper maxillary canines and
the third premolar teeth (*‘premolars’) were the focus of this
study because they play a different role in behavioral inter-
actions of grizzlies. Canines are likely to be under sexual se-
lection because they are prominently displayed in intra- and
intersexual interactions in grizzlies and are also sexually di-
morphic (e.g., Craighead et al., 1995). The sexually mono-
morphic premolars are not visible during such interactions
and therefore are unlikely to be under sexual selection (see
also Harvey et al., 1978; Kappeler, 1996; Kay et al., 1988; Man-
ning and Chamberlain, 1993, 1994; Plavcan and van Schaik,
1992, 1994).

First, I show that canines and premolars show FA between
right and left sides of the upper jaw. I then tested the follow-
ing predictions: (1) size of sexually dimorphic canines should
be linearly negatively proportional to canine asymmetry, un-
der the assumption that canine size is under directional se-
lection, whereas asymmetry in premolar size should be greater
in sizes deviating from the population mean, assuming that
(a) premolar size is under stabilizing selection (Maller, 1992;
Mgller and Pomiankowski, 1993; Parker and Leamy, 1991)
and (b) canine size indicates male phenotypic quality and
large canines are costly to produce {(Evans, 1993; Mgller, 1992;
Mgller and Pomiankowski, 1993; Rowe et al., in press). (2)
Asymmetry in dentition should be greater in bears born dur-
ing the postclosure period compared to bears born during
the preclosure period, and asymmetry in sexually dimorphic
canines should show greater change than premolars following
dump closure. Here I assumed that (a) directional selection
on traits favors greater response of such traits to environmen-
tal conditions and (b) asymmetry in measured traits results
from failures of homeostasis during trait development (Mgl-
ler, 1992; Mgller and Pomiankowski, 1993; Soulé and Cuzin-
Roudy, 1982), thereby making directionally selected sexually
dimorphic traits more variable between individuals and more
responsive to variation in environmental conditions (Hill,
1995; McLain, 1993; Parsons, 1995). (3) Finally, costs of
changes in food distribution and quality following dump clo-
sure (Craighead et al., 1995) are likely to be unequal among
individuals because territorial and hierarchical behaviors dur-
ing stressful conditions commonly contribute to increased
variation in individual quality (Parsons, 1995). Under stressful
conditions, the development of symmetrical and large traits
might be more difficult to achieve. If development of large
and symmetrical traits depends on individual quality, then the
slope of the FA-versus-trait-size relationship should increase
because relatively fewer individuals would be able to develop
large and symmetrical traits.

METHODS

[ measured asymmetry in dentition in 52 grizzly skulls without
visible nondevelopmental damage of teeth. I measured canine
diameter and premolar width along the anteroposterior axis
at the alveolar margin. Tooth height was measured from the
apex of the crown to the alveolar margin. Skull length (con-
dylobasal length) was measured from posteriormost point on
occipital condyles and the anteriormost point on premaxillary
bones between the first pair of upper incisor teeth. Only in-
dividuals with fully erupted molars (adults > 3 years of age in
my sample) were measured. Skulls of grizzly bears from a sin-
gle population in Yellowstone National Park were from the
John and Frank Craighead Collection, located at the Phil H.
Wright Zoological Museum at the University of Montana in
Missoula, Montana, USA (UM) and from the Montana De-
partment of Fish, Wildlife, and Parks collection in Bozeman,
Montana, USA (FW). Data on sex and year of birth were ob-
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tained by an independent observer from museum catalogs af-
ter asymmetry in dentition was measured.

To estimate reliability of measurements, I repeated all mea-
surements twice (FW) or four times (UM). Average values of
these measurements were used in the analyses. Repeatability
of measurements was sufficiently high (>91%), and the vari-
ance of within-tooth measurements was significantly smaller
than the variance of between-tooth measurements for all traits
[Becker, 1984; e.g., for canine height (UM): 0.12 versus 2.11,
Fig = 1092, n; = 4, n, = 24, p = .0018]. The variance of
asymmetry expected from measurement error was significant-
ly smaller than the variance of observed tooth asymmetry
[Palmer and Strobeck 1986; ANCOVA of model with jaw side
(left or right) to control for possible directional asymmetry,
individual, and the mean of replicates versus model with jaw
side, individual, and replicates as independent factors [e.g.,
for canine height (UM), F;,, = 15.32, p < .001].

Mean tooth height (width or diameter) of an individual was
the mean of left and right tooth [0.5(L + R)]. Absolute asym-
metry was an absolute value of (L — R). Relative asymmetry
was ([l — R])/0.5(L + R). I used the largest of the paired
characters in regressions of asymmetry on trait size (Sullivan
et al,, 1993). I evaluated plots of untransformed data and re-
sults of linear and second-order polynomial regressions
[PROC RSREG of SAS software (1989)] to examine whether
the asymmetry versus tooth size relationship was linear or U-
shaped. I examined residual plots and statistics to ensure va-
lidity of normality and variance homogeneity assumptions in
regressions (Montgomery and Peck, 1992; SAS Institute,
1989).

RESULTS

Males had larger skulls and proportionally longer canines
than females (Table 1). Sexes were similar in premolar size
and dental asymmetry (Table 1). Results were similar for tooth
diameter and width (Table 1). Thus, below I report only anal-
yses of variation in tooth height. Statistically, canine and pre-
molars showed FA, as the population mean of left minus right
tooth heights did not differ from zero (canines: both ¢ < .9,
p > .40; premolars: both ¢ < 1.1, p > .30) and asymmetries
were normally distributed (the Shapiro and Wilk’s test, both
W< .85, p <.001).

In males, canine asymmetry was negatively linearly related
to canine height, but a second-order polynomial regression
best fit the relationship between premolar asymmetry and pre-
molar height (canines: linear regression F' = 25.37, p < .0001;
second-order polynomial regression: I = 0.824, p = .37; pre-
molars: linear regression F = 4.21, $ = .06; second-order poly-
nomial regression: F = 11.89, p = .001; Figure 1). In females,
tooth FA versus tooth height relationship was best fitted by
second-order polynomial for both canines and premolars (ca-
nines: linear regression F = .075, p = .78; second-order poly-
nomial regression: F = 7.77, p = .003; premolars: linear re-
gression F = 167, p = .69; second-order polynomial regres-
sion: F' = 3.65, p = .057; Figure 2).

Canines, premolars, and overall skull length were smaller
in males born during postclosure than in males born during
preclosure periods (Table 1). To account for changes in trait
size, relative asymmetry was used to compare changes in den-
tal asymmetry between pre- and postclosure periods. Relative
asymmetry in canines, but not in premolars, increased in
males born during the postclosure period (Figure 3a). Dental
asymmetry of females did not differ between the two periods
(Figure 3b). In males, the relationship between asymmetry
and tooth height changed in both canines and premolars be-
tween pre- and postclosure periods (canines: Figure 1; pre-
molars: preclosure regression coefficient () = —0.06%=0.02
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Table 1
Morphological traits of grizzly bears born before (before 1970) and after (after 1970) dump closure at Yellowstone National Park
[untransformed means = SD (CV)]
Preclosure period Postclosure period
Morphological trait Males (n = 19) Females (n = 12) Males (n = 15) Females (n = 8) Prex
Canine height (mm) 40.25 * 4.83 (12.00) 33,20 = 2,91 (8.78) 36.48 £ 4,05 (11,09) 31.86 £ 3.89 (12.22) 0001
Canine diameter (mm) 21.39 = 3.06 (14.29) 16.33 = 1.80 (11.05) 18.72 = 2.15 (11.47)  14.42 = 2,40 (16.67) 0001
Premolar height (mm) 10.70 = 1.22 (11.36)  10.14 = 0.72 (7.13) 10.57 = 0.82 (7.72) 9.26 * 0.98 (10.57) 02
Premolar width (mm) 14.65 = 1.70 (11.58) 13.37 = 1.69 (12.62) 16.27 + 1.28 (7.89)" 14.84 = 0.32 (2.15) .04
Condylo-basal length (cm) 32.64 * 2,53 (7.76) 28,71 £ 2.16 (7.52) 30.13 £ 2,43 (8.07)*  27.87 £ 3.28 (11.75) 0004
FA in canine length (nun) 1.13 = 0.97 (853.64) 1.15 = 0.70 (61.28) 244 + 1.96 (80.24) 1.14 = 0.58 (51.39) .16
FA in canine diameter (mm) 0.99 = 1.13 (113.95) 1.03 x 1.40 {135.81) 1.46 = 1.97 (135.03) 0.43 = 0.64 (148.94) 17
FA in premolar height (mm) 0.69 * 0.50 (72.98) 0.80 = 0.66 (82.18) 0.40 £ 0.42 (105.85) 0.23 = 0.15 (65.17) .89
FA in premolar width (mm) 0.44 + 0.37 (83.24) 0.40 = 0.26 (64.40) 1.13 = 1.61 (143.34)  0.29 £ 0.36 (120.69) 75
*Significantly different from preclosure period at ¢ < 0.05 in sequential within-sex Bonferroni tests,
" Significantly different between sexes (pre- and postclosure combined) at a < 0.05 in sequential Bonferroni tests.
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(a) The relationship between absolute fluctuating asymmetry (FA)
and largest canine [overall linear regression (combining pre- and
posiclosure periods) coefficient B = —0.23%0.06 (SE), t = —3.60, p 0
= .001]. Graphs show changes in relationship between absolute FA — L — !
and canine height between male grizzly bears born during 8 9 10 1 12
preclosure (dashed line) and postclosure (solid line) periods. height of largest premolar, mm
Preclosure B = —0.1120.05 (SE), ¢t = —2.50, p = .026 ; posiclosure
B = —-038x0.15,t = =237, p = .03). Slope is steeper in Figure 2

postclosure regression (ANCOVA, /= 4.25, p = .056). Log scale is
used to accomodate changes in canine size between two periods.
(b) The relationship berween absolute FA and the largest premolar
(second-order polynomial § = —0.0520.02, ¢ = —3.35 p = .002) in
niale grizzly bears in the Yellowstone population.

The relationship between absolute fluctuating asymmetry (FA) and
largest (a) canine (second-order polynomial = 0.09£0.05 (SE), ¢
= 2.25, p = .035) and (b) premolar (second-order polynomial & =
0.0620.03, t = 2.39, p = .04) in female grizzly bears in the
Yellowstone population.
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(SE), t = —2.98, p = .008; postclosure B = —0.05x£0.03, t =
—1.79, p = .09; ANCOVA for difference, F' = 4.24, p = .048].
In females, the relationship between asymmetry and tooth
height did not change (both F < 2.0, p > .20) between the
two periods for either canines of premolars (canines: preclo-
sure B = 0.03x0.02, + = 1.96, p = 0.09 ; postclosure B =
—0.03x0.03, = —0.96, p = .44; premolars: preclosure § =
—0.01+0.006, + = —198, p = .08; postclosure B =
—0.005x0.02, t = —1.633, p = .24).

DISCUSSION

Phenotypic expression of any component of an organism, in-
cluding sexual traits, is ultimately controlled by developmental
pathways that allocate an organism’s resources between the
competing demands of maintenance, growth, and reproduc-
tion (Badyaev, 1997; Emlen, 1996; Kodric-Brown and Brown,
1984; McLain, 1993; Nur and Hasson, 1984; Parsons, 1995;
Sibly and Calow, 1986; Williams, 1966; Zahavi, 1975). Periods
of rapid environmental change may cause reallocation of re-
sources away from less important developmental processes to-
ward more essential traits (Graham et al., 1993; Kieser, 1993),
leading to unequal effects of stress on different kinds of traits
(Parsons, 1995). For example, short-term environmental stress
resulting from inadequate nutrition (e.g., Harris and Nweeia,

1980; Swaddle and Witter, 1994), increased parasite infesta-
tion (e.g., Potti and Merino, 1996), decreased habitat suit-
ability (Manning and Chamberlain, 1994), pollution (Hurst et
al., 1991; Mgller, 1993; Schandorff, 1997; Zakharov and Yablo-
kov, 1989), or climatic extremes (¢.g., Badyaev and Ghalam-
bor, in press; Parsons, 1995) can directly influence allocation
trade-offs and the expression of condition-dependent second-
ary sexual traits (Hill, 1995). Similarly, I found support for an
a priori prediction that different tooth groups respond differ-
ently to environmental stress. Developmental stability of ca-
nines, which are under directional sexual selection for in-
creased size in males (Figure 1), was more responsive to en-
vironmental stress compared to developmental stability of
male premolars or female dentition, which are under stabiliz-
ing selection (Figures 2, 3). These results correspond with
previous findings of increased FA following environmental
stress in sexually selected canines, but not in sexually mono-
morphic, premolars in the western lowland gorilla (Gorilla
gorilla gorilla) (Manning and Chamberlain, 1994). Similarly,
Mgller (1993) documented strong increases in FA of sexually
selected traits, but not in nonsexually selected traits, in Cher-
nobyl area barn swallows (Hirundo rustica) following radio-
active contamination caused by the 1986 accident at the Cher-
nobyl Nuclear Power Station.

The mechanisms behind higher sensitivity of sexual traits
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to environmental conditions are not well understood (e.g.,
Graham et al., 1993; Hill, 1995). My results support the idea
that directional selection on secondary sexual traits may select
against strict developmental control (Mgller, 1992; Mgller and
Pomiankowski, 1993) thereby making sexual traits more re-
sponsive to resource availability and allocation during growth
compared to nonsexually selected traits (Badyaev et al., in
press; McLain, 1993; Parsons, 1995; Watson and Thornhill,
1994). I found that developmental stability of canines and pre-
molars is associated with the mode of selection; sexually di-
morphic canines and sexually monomorphic premolars
showed different patterns of relationship between tooth FA
and tooth sizes (Figures 1, 2). For sexually selected canines
under directional selection, developmental stability increased
with development of the trait (Figure 1). These results there-
fore support other studies that show that FA decreases with
increasing trait size when a trait serves as an indicator of in-
dividual quality (Evans, 1993; Mgller, 1990, 1992; Mgller and
Pomiankowski, 1993; Rowe et al,, in press).

If large sexual traits are more costly to produce and main-
tain under stressful conditions compared to more favorable
conditions, and symmetry itself is a selected trait, then fewer
individuals should be able to achieve both larger and sym-
metrical traits under stressful conditions. Differences in food
distribution and corresponding changes in territorial behav-
ior are likely to result in greater variation in individual quality
during stressful periods than during more favorable condi-
tions (e.g., Low, 1990; Mgller, 1995; Tomkins and Simmons,
1996). Because the Yellowstone National Park garbage dump
sites were small, they could have been successfully defended
by a few dominant individuals against intruders. However, it
is likely that considerable and renewable amounts of food
available at dump sites (Craighead et al., 1995) allowed sub-
dominant bears to acquire more and higher quality food com-
pared to what they would have been able to obtain under
natural conditions. Changes in the relationship between ca-
nine FA and canine size from pre- to postclosure periods (Fig-
ure la) clearly demonstrate an increased relative cost of ca-
nine tooth production after this stressful event. As a result of
the increased cost, fewer animals were able to achieve both
large size and symmetrical development of canines, and thus
the slope of the relationship between FA and canine size in-
creases (Figure 1a). Therefore, stress appears to act as an hon-
esty-reinforcement mechanism in selection for condition-de-
pendent large and symmetrical canines (Figure 1a). Increased
relative cost of canine growth during the postclosure period
indicates that foraging at open dump sites allowed more in-
dividuals to maintain good body condition, thus decreasing
variation in quality among individuals. Furthermore, following
the dump closure, the Yellowstone bears’ home ranges in-
creased more than fivefold (Figure 3; Craighead et al., 1995).
Increase in home ranges could be the result of competition
with conspecifics, or it could reflect a shortage of resources
such as food (e.g., Badyaev et al., 1996). In either case, stress-
ful conditions resulted from garbage dump closures, and
stress appears to act as an honesty-reinforcing mechanism
(Grafen, 1990; Kodric-Brown and Brown, 1984; Zahavi, 1975)
because only individuals who could successfully withstand
stress during growth developed the most symmetrical denti-
aon.

It is interesting that although the garbage dump closure
clearly represented a stressful event in the Yellowstone grizzly
population (Craighead et al., 1995), stress induced by this
event appears to be comparable in range to periodic nutri-
tional stresses suffered by bears. For example, periodic mul-
tiyear mast and berry crop failures (e.g., Rogers, 1976), irreg-
ular or unusually low salmon runs (Davis et al., 1986), as well
as diet change following natural fires (Craighead et al., 1995)
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have been shown to influence growth, mortality, and fecundity
in bears. Field studies of natural populations are needed to
further our understanding of how selection for developmental
stability is influenced by stressful events and what role peri-
odic stressful events may play in forming preferences for abil-
ity to buffer such stresses.
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